99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做CHC6089、代寫 java/c++程序語言

時間:2023-11-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯




OBU COMPUTING
Module CHC6089: Machine Learning:  Semester 1, 2023/24
Coursework 1: Experimental Comparison of Different Supervised Machine Learning Algorithms Using UCI Dataset
 
For this coursework 1, you are required to evaluate and compare fivesupervised machine learning algorithms using UCI dataset in Python programming language methods. Every student is expected to have their individual dataset according to their class grouping. This coursework 1 is worth 30% of the module mark.
Learning Outcomes
1. Evaluate and articulate the issues and challenges in machine learning, including model selection, complexity and feature selection.
2. Demonstrate a working knowledge of the variety of mathematical techniques normally adopted for machine learning problems, and of their application to creating effective solutions.
3. Critically evaluate the performance and drawbacks of a proposed solution to a machine learning problem.
4. Create solutions to machine learning problems using appropriate software.
Data set
 
This coursework is designed to allow you to work freely and make sure that your report is unique by avoiding collusions.  No two students ought to possess an identical or comparable dataset. Each student will receive a different UCI dataset at random, and you will need to download it from the student website as designated by the module leader. The dataset that you have been given must be used and followed strictly. The purpose of this instruction is to encourage students to work independently, avoid cheating and collusion; any infringement will result in a deduction of twenty points.  
Machine Learning and Evaluation
For this coursework you will evaluate five supervised learningmethods on UCI dataset in Python. The first algorithm is linear regression, second algorithm is logistic regression, third algorithm is neural network, fourth model is decision tree and the fifth model is k-nearest neighbour. 
You may implement these algorithms using the inbuilt classifiers; however you are highly encouraged to implement the functionsyourself to train the classifiers. More so, inbuilt function for error measurement is not allowed.
 
The objective of this coursework is to experimentally investigate which supervised algorithm is best suited for the dataset, and whichparameter values are best. In order to answer this question you need to evaluate the error measurement rate and any other performance evaluation metrics you can provide.
 
Experiments must at least show:
• The training and test error for all the models.
• Develop appropriate data handling code. 
• The use of inbuilt error measurement is not allowed for this coursework.
• Experimentally compare different hyper-parameters.
• Provide a visualization of how data was classified for each method (or parameter value), for example based on a scatter plot of two of the features. You are allowed to utilize any inbuilt visualization routines you like, such as plot, or scatter. 
The entire experiment must be submitted as jupyter notebook script file (.ipynb) from which all results and figures can be reproduced.
 
 
 
Report structure and assessment (30% of module mark)
1) Write a brief introduction that introduces (5%)
a) Provide a brief introduction of the supervised learning problem as it relates to real-life challenges.
b) Give details of the dataset and other information that describe the dataset.
c) Briefly explain the five models as well as possible parameters.
d) Briefly explain how the models can be individually applied to the dataset.
 
2) Realize and describe the experiment that evaluates the error measurement rate for all the models on your specific dataset. Explain the choice (or necessity) of your error measurement method. Make sure you use appropriate illustrations and diagrams as well as statistics. What other evaluation metrics than just theerror measurement method could be important to decide which method is most suited? More so, discuss the result of the chosen evaluate metrics.  (20%)
 
3) Write a brief conclusion on the results. Mention the algorithm that provides the best result and mentioned the hyper-parameters used. Also, provide a comparison of all the model performance results. (5%)
 
Submission
 
Submit your report following the report structure provided above. Include step-by-step descriptions of the tasks you performed and the results obtained during the experiment. Ensure that your report is well-organized, clearly written, and includes all the necessary evaluation metrics and graphs as specified in the coursework requirements. The submission deadline is week 9, November 2023, by 16:00. Late submissions may incur penalties of up to 10 marks reduction, so make sure to plan your work accordingly. Failure to submit your coursework will result to Zero Mark. In the case of exceptional circumstances, contact the Award Administrator in advance.
 
Submission Format:
The coursework assignment submitted should be compressed into a .zip or .rar file, the following files should be contained in the compressed file:
▪ A report as a Microsoft Word document.
   File name format: ‘Student ID_MLCoursework1_Report.docx’
▪ A .zip or .rar file containing the report experiments: all the program’s sources, including the code, graphs, model architecture, results, and diagrams from the experiments. All implementation source code must be submitted as a Jupyter Notebook script (.ipynb) for easy reproducibility. Your final zipped folder should be submitted digitally to the student website.
 請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP528、代做 Python ,java 編程
  • 下一篇:COMP24011 代做、代寫 java/Python 程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                另类的小说在线视频另类成人小视频在线 | jlzzjlzz欧美大全| 久久精品国产99久久6| 777a∨成人精品桃花网| 欧美tickling挠脚心丨vk| 久久久亚洲高清| 亚洲自拍欧美精品| 亚洲国产精品久久人人爱 | 日本成人中文字幕在线视频| 国产精品18久久久久久久网站| 国产91丝袜在线播放九色| 国产成人精品一区二区三区网站观看| 92国产精品观看| 免费高清在线一区| 天天综合天天做天天综合| 国产精品久久久久久久浪潮网站| 制服丝袜中文字幕亚洲| 亚洲国产精品精华液网站| 日本道色综合久久| 欧美视频在线一区| 欧美成人a∨高清免费观看| 亚洲3atv精品一区二区三区| 成人免费在线播放视频| www.亚洲精品| 亚洲一区二区三区小说| 欧美视频一二三区| 亚洲色图都市小说| 欧美日韩国产首页| 欧美日韩免费电影| 亚洲国产综合色| 91精品国产色综合久久不卡电影| 欧美精品一区二区三区蜜臀 | 亚洲日本一区二区三区| 在线精品亚洲一区二区不卡| bt7086福利一区国产| 国产精品亲子伦对白| 一本一道久久a久久精品| 欧美日韩视频在线第一区 | 精品国产乱码久久久久久蜜臀| 国产精品伊人色| 亚洲激情中文1区| 亚洲大片免费看| 精品理论电影在线观看| 波多野结衣亚洲| 午夜婷婷国产麻豆精品| 久久久精品免费网站| 欧美自拍丝袜亚洲| 国内外精品视频| 欧美日韩的一区二区| 激情欧美一区二区三区在线观看| 亚洲免费在线观看视频| 国产+成+人+亚洲欧洲自线| 亚洲同性同志一二三专区| 欧美zozo另类异族| 欧美三级蜜桃2在线观看| 国产老妇另类xxxxx| 亚洲综合久久av| 日本一区二区免费在线观看视频 | 在线亚洲高清视频| 国产专区欧美精品| 日韩国产欧美在线观看| 亚洲美女精品一区| 2023国产精华国产精品| 欧美福利视频一区| 亚洲成av人片www| 国产午夜亚洲精品不卡| 91麻豆精品国产无毒不卡在线观看 | 亚洲美腿欧美偷拍| 国产区在线观看成人精品 | 欧美成人女星排行榜| 欧美日韩精品免费| 色综合久久久久综合体桃花网| 国产成人99久久亚洲综合精品| 久久电影网站中文字幕| 麻豆视频观看网址久久| 日韩在线一二三区| 午夜激情一区二区| 亚洲v精品v日韩v欧美v专区| 一区二区三区高清| 一区二区免费视频| 亚洲高清免费观看 | 首页国产欧美久久| 亚洲福利视频一区| 亚洲成人先锋电影| 日韩精品福利网| 美女脱光内衣内裤视频久久网站 | 日韩午夜在线观看| 欧美一级久久久久久久大片| 7777精品伊人久久久大香线蕉经典版下载 | 亚洲国产一二三| 香蕉成人啪国产精品视频综合网| 亚洲国产综合人成综合网站| 天天做天天摸天天爽国产一区| 日韩精品电影一区亚洲| 精品写真视频在线观看| 国产成人在线影院| 99麻豆久久久国产精品免费优播| 大胆亚洲人体视频| 91麻豆swag| 欧美久久久久久久久久| 日韩欧美国产高清| 国产精品网友自拍| 无码av中文一区二区三区桃花岛| 奇米精品一区二区三区四区| 国产成人av资源| 在线观看一区不卡| 精品福利在线导航| 国产精品久99| 视频一区二区三区入口| 久久99久久精品欧美| 成人午夜又粗又硬又大| 欧洲生活片亚洲生活在线观看| 欧美精品 国产精品| 中文字幕精品综合| 日韩福利电影在线| gogo大胆日本视频一区| 欧美二区三区的天堂| 国产人伦精品一区二区| 性做久久久久久久久| 成人免费的视频| 26uuu久久综合| 亚洲一二三区视频在线观看| 九一九一国产精品| 欧美三级在线播放| 日本一区二区视频在线观看| 日韩成人伦理电影在线观看| 91色.com| 欧美极品少妇xxxxⅹ高跟鞋| 日韩中文字幕亚洲一区二区va在线 | 亚洲天天做日日做天天谢日日欢 | 久久先锋影音av| 亚洲一区二区欧美日韩| 国产精品白丝av| 在线播放视频一区| 一区二区三区四区不卡视频| 成人黄色777网| 国产人成亚洲第一网站在线播放| 婷婷中文字幕一区三区| 99国产精品视频免费观看| 久久久久国产一区二区三区四区| 青草国产精品久久久久久| 欧美日韩三级一区| 亚洲综合色视频| 91国模大尺度私拍在线视频| 国产精品久久久久久福利一牛影视| 极品瑜伽女神91| 91久久精品一区二区| 精品国产乱码久久久久久久| 亚洲欧洲另类国产综合| 成人在线视频一区| 国产精品久久久久天堂| 国产成人精品亚洲日本在线桃色| 欧美va天堂va视频va在线| 老司机精品视频一区二区三区| 欧美丰满美乳xxx高潮www| 亚洲图片有声小说| 欧美撒尿777hd撒尿| 亚洲一区自拍偷拍| 成人午夜视频网站| 中文字幕亚洲成人| 色综合久久久久综合99| 亚洲已满18点击进入久久| 在线免费观看日本欧美| 亚洲高清三级视频| 678五月天丁香亚洲综合网| 午夜电影网亚洲视频| 91精品国产欧美日韩| 久久国产精品色婷婷| 久久久久久久久岛国免费| 成人免费高清在线观看| 亚洲女同一区二区| 欧美探花视频资源| 六月丁香综合在线视频| 精品成人在线观看| 成人av电影在线| 亚洲成av人片观看| 久久蜜桃香蕉精品一区二区三区| 成人性生交大合| 国产精品伦理一区二区| 成人免费黄色在线| 视频一区免费在线观看| 精品国产99国产精品| 国产主播一区二区| 久久精品人人做人人综合| 国产在线不卡一区| 中文字幕av资源一区| 99re在线精品| 亚洲一级在线观看| 久久嫩草精品久久久久| 91网站黄www| 视频一区国产视频| 国产精品久久久久久久浪潮网站| 欧美日韩另类国产亚洲欧美一级| 国产精品一二三区| 亚洲一区二区av在线| 国产日韩欧美一区二区三区乱码 | 日本一区二区三区四区在线视频| 精品欧美黑人一区二区三区| 日韩一区二区不卡| 日韩欧美亚洲国产精品字幕久久久|