99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做MA2552、代寫Matlab編程設計

時間:2023-12-15  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


MA2552 Introduction to Computing (DLI) 2023/24

Computational Project

Aims and Intended Learning Outcomes

The aims of the Project are to describe methods for solving given computational problems, develop and test Matlab code implementing the methods, and demonstrate application

of the code to solving a specific computational problem. In this Project, you be will be required to demonstrate

• ability to investigate a topic through guided independent research, using resources

available on the internet and/or in the library;

• understanding of the researched material;

• implementation of the described methods in Matlab;

• use of the implemented methods on test examples;

• ability to present the studied topic and your computations in a written Project Report.

Plagiarism and Declaration

• This report should be your independent work. You should not seek help from other

students or provide such help to other students. All sources you used in preparing your

report should be listed in the References section at the end of your report and referred

to as necessary throughout the report.

• Your Project Report must contain the following Declaration (after the title page):

DECLARATION

All sentences or passages quoted in this Project Report from other people’s work have

been specifically acknowledged by clear and specific cross referencing to author, work and

page(s), or website link. I understand that failure to do so amounts to plagiarism and

will be considered grounds for failure in this module and the degree as a whole.

Name:

Signed: (name, if submitted electronically)

Date:

Project Report

The report should be about 6-8 pages long, written in Word or Latex. Equations should

be properly formatted and cross-referenced, if necessary. All the code should be included in

the report. Copy and paste from MATLAB Editor or Command Window and choose ‘Courier

New’ or another fixed-width font. The Report should be submitted via Blackboard in a single

file (Word document or Adobe PDF) and contain answers to the following questions:

1

MA2552 Introduction to Computing (DLI) 2023/24

Part 0: Context

Let f(x) be a periodic function. The goal of this project is to implement a numerical method

for solving the following family of ordinary differential equations (O.D.E):

an

d

nu(x)

dxn

+ an−1

d

n−1u(x)

dxn−1

+ . . . + a0u(x) = f(x), (1)

where ak, k = 0, · · · , n, are real-valued constants. The differential equation is complemented

with periodic boundary conditions:

d

ku(−π)

dxk

=

d

ku(π)

dxk

for k = 0, · · · , n − 1.

We aim to solve this problem using a trigonometric function expansion.

Part 1: Basis of trigonometric functions

Let u(x) be a periodic function with period 2π. There exist coefficients α0, α1, α2, . . ., and

β1, β2, . . . such that

u(x) = X∞

k=0

αk cos(kx) +X∞

1

βk sin(kx).

The coefficients αk and βk can be found using the following orthogonality properties:

Z π

−π

cos(kx) sin(nx) dx = 0, for any k, n

Z π

−π

cos(kx) cos(nx) dx =

ɽ**;?**0;

ɽ**;?**1;

0 if k ̸= n

π if k = n ̸= 0

2π if k = n = 0.

Z π

−π

sin(kx) sin(nx) dx =

(

0 if k ̸= n

π if k = n ̸= 0.

1. Implement a function that takes as an input two function handles f and g, and an

array x, and outputs the integral

1

π

Z π

−π

f(x)g(x) dx,

using your own implementation of the Simpson’s rule scheme. Corroborate numerically

the orthogonality properties above for different values of k and n.

2. Show that

αk =

(

1

π

R π

−π

u(x) cos(kx) dx if k ̸= 0

1

R π

−π

u(x) dx if k = 0

βk =

1

π

Z π

π

u(x) sin(kx) dx.

2

MA2552 Introduction to Computing (DLI) 2023/24

3. Using question 1 and 2, write a function that given a function handle u and an integer

m, outputs the array [α0, α1 . . . , αm, β1, . . . , βm].

4. Write a function that given an array [α0, α1 . . . , αm, β1, . . . , βm], outputs (in the form

of an array) the truncated series

um(x) := Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx), (2)

where x is a linspace array on the interval [−π, π].

5. Using the function from question 3, compute the truncated series um(x) of the following

functions:

• u(x) = sin3

(x)

• u(x) = |x|

• u(x) = (

x + π, for x ∈ [−π, 0]

x − π, for x ∈ [0, π]

,

and using question 4, plot u(x) and um(x) for different values of m.

6. Carry out a study of the error between u(x) and um(x) for ∥u(x)−um(x)∥p with p = 2

and then with p = ∞. What do you observe?

Part 2: Solving the O.D.E

Any given periodic function u(x) can be well approximated by its truncate series expansion (2) if m is large enough. Thus, to solve the ordinary differential equation (1)

one can approximate u(x) by um(x):

u(x) ≈

Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx),

Since um(x) is completely determined by its coefficients [α0, α1 . . . , αm, β1, . . . , βm],

to solve (1) numerically, one could build a system of equations for determining these

coefficients.

7. Explain why under the above approximation, the boundary conditions of (1) are automatically satisfied.

8. We have that

dum(x)

dx =

Xm

k=0

γk cos(kx) +Xm

k=1

ηk sin(kx)

Write a function that takes as input the integer m, and outputs a square matrix D that

maps the coefficients [α0, . . . , αm, β1, . . . , βm] to the coefficients [γ0, . . . , γm, η1, . . . , ηm].

3

MA2552 Introduction to Computing (DLI) 2023/24

9. Write a function that given a function handler f and the constants ak, solves the

O.D.E. (1). Note that some systems might have an infinite number of solutions. In

that case your function should be able identify such cases.

10. u(x) = cos(sin(x)) is the exact solution for f(x) = sin(x) sin(sin(x))−cos(sin(x)) (cos2

(x) + 1),

with a2 = 1, a0 = −1 and ak = 0 otherwise. Plot the p = 2 error between your numerical solution and u(x) for m = 1, 2, . . .. Use a log-scale for the y-axis. At what rate

does your numerical solution converge to the exact solution?

11. Show your numerical solution for different f(x) and different ak of your choice.

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:INT3095代做、代寫Artificial Intelligence語言編程
  • 下一篇:代寫MGMT20005、代做Decision Analysis程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          国产一区二区三区电影在线观看 | 国产精品久久久久久久app | 国产精品视频九色porn| 久久久久国产成人精品亚洲午夜| 亚洲精品美女久久7777777| 国产日韩欧美三级| 欧美日韩一区二区三区四区五区| 久久精品视频99| 亚洲一区二区三区久久| 亚洲欧洲一区二区三区在线观看| 国产欧美在线视频| 国产精品毛片va一区二区三区| 嫩草伊人久久精品少妇av杨幂| 欧美一区成人| 亚洲欧美日韩高清| 中文亚洲视频在线| 夜夜爽99久久国产综合精品女不卡| 国内精品伊人久久久久av影院| 国产精品久久久久久久久久免费看| 欧美sm视频| 狂野欧美一区| 欧美 日韩 国产 一区| 久久噜噜亚洲综合| 久久久久一区| 老司机免费视频一区二区三区| 欧美一二三区在线观看| 午夜伦理片一区| 欧美一级专区免费大片| 午夜日韩电影| 久久精品国产久精国产一老狼| 性欧美精品高清| 久久精品国产清自在天天线| 欧美影院精品一区| 久久九九99| 久久久久国产一区二区三区| 久久视频这里只有精品| 久久这里有精品视频| 欧美成人亚洲| 欧美日韩不卡| 国产精品色婷婷久久58| 国产日韩欧美制服另类| 一区在线播放| 亚洲乱码国产乱码精品精| 一个人看的www久久| 午夜精品婷婷| 久久亚洲综合色一区二区三区| 免费高清在线一区| 欧美天天在线| 国产免费成人av| 在线日韩日本国产亚洲| 亚洲毛片播放| 欧美一区在线直播| 欧美bbbxxxxx| 国产欧美精品日韩| 亚洲电影免费观看高清| 亚洲一级黄色| 久热精品视频在线观看| 欧美视频一区二区三区四区| 国产亚洲免费的视频看| 亚洲激情成人| 欧美在线视频免费观看| 欧美国产一区在线| 国产精品久久久久久久久久久久久 | 欧美日韩国产美女| 国产欧美日韩精品在线| 亚洲精品国产精品国自产在线| 亚洲在线日韩| 欧美激情一区二区三区在线视频观看 | 国产精品日韩电影| 亚洲人成网站999久久久综合| 亚洲欧美视频在线观看视频| 免费影视亚洲| 国产在线高清精品| 亚洲一区二区三区乱码aⅴ| 久久综合久久综合久久| 国产精品一香蕉国产线看观看 | 极品尤物av久久免费看| 亚洲午夜免费福利视频| 欧美成人精精品一区二区频| 国产一区自拍视频| 亚洲尤物在线| 欧美日韩系列| 亚洲人成人99网站| 噜噜噜在线观看免费视频日韩| 国产精品日韩欧美大师| 正在播放日韩| 欧美日韩视频在线第一区| 亚洲国产精品久久久久婷婷884| 午夜精品久久久| 国产精品日韩在线一区| 99国产精品99久久久久久粉嫩| 欧美大片免费久久精品三p | 欧美va亚洲va国产综合| 狠狠色丁香久久综合频道 | 国产精品羞羞答答| 亚洲视频久久| 国产精品免费看片| 性欧美videos另类喷潮| 国产精品美女久久久久久2018 | 国产精品青草久久| 亚洲一区二区高清| 国产精品视频网| 欧美在线观看视频在线| 国产自产在线视频一区| 久久艳片www.17c.com| 亚洲国产日韩欧美| 欧美激情精品久久久久久变态| 亚洲精品久久久久久久久| 欧美日韩在线视频首页| 亚洲欧美日韩一区二区| 国内精品一区二区三区| 久久综合伊人77777| 日韩视频三区| 国产精品视频精品| 久久综合电影| 9色国产精品| 国产精品综合av一区二区国产馆| 久久精品国产69国产精品亚洲| 在线观看日韩av| 欧美日韩国产精品专区 | 国产欧美日韩另类视频免费观看| 久久国产精品第一页| 亚洲人成精品久久久久| 国产精品第十页| 久久免费观看视频| 在线亚洲激情| 在线成人激情| 国产精品一级二级三级| 久久综合免费视频影院| 一区二区三区视频在线看| 国产专区综合网| 欧美理论电影网| 香蕉免费一区二区三区在线观看| 在线成人免费观看| 国产精品久久久一区二区| 久久人人爽人人爽| 亚洲一区图片| 91久久久久久| 国内精品伊人久久久久av影院| 欧美日韩高清免费| 老牛嫩草一区二区三区日本| 亚洲男同1069视频| 99pao成人国产永久免费视频| 国产亚洲免费的视频看| 国产精品国产亚洲精品看不卡15 | 久久久久久久综合日本| 亚洲一区精品在线| 日韩一区二区免费高清| 亚洲国产成人精品女人久久久 | 久久国产主播精品| 亚洲在线视频观看| 日韩亚洲欧美一区二区三区| 伊人久久大香线| 国产综合久久久久久| 国产精品自拍网站| 国产精品女人久久久久久| 欧美日韩在线播放三区| 欧美日韩dvd在线观看| 欧美激情二区三区| 欧美福利在线| 嫩草伊人久久精品少妇av杨幂| 久久久久在线| 久久av一区| 久久精品女人的天堂av| 欧美一二三视频| 欧美在线国产精品| 欧美在线亚洲| 久久噜噜亚洲综合| 久久伊伊香蕉| 欧美成人嫩草网站| 欧美久久婷婷综合色| 欧美精品免费播放| 欧美欧美天天天天操| 欧美日韩免费| 欧美日韩一区国产| 国产精品成人一区二区| 国产精品亚洲综合天堂夜夜| 国产精品一二三四区| 国产一区二区精品久久| 激情校园亚洲| 日韩视频在线观看| 亚洲一区二区三区视频| 欧美一区二区三区免费大片| 久久激情视频久久| 欧美大片网址| 国产精品免费观看在线| 国产老女人精品毛片久久| 国产亚洲欧美激情| 最近看过的日韩成人| 一区二区三区你懂的| 欧美一区二视频在线免费观看| 久久婷婷av| 欧美日韩综合在线| 国产亚洲在线| 亚洲精品视频二区| 欧美一区二区大片| 久久在线播放| 欧美二区乱c少妇| 欧美三级不卡| 国产日韩欧美日韩大片|