99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做MA2552、代寫Matlab編程設計

時間:2023-12-15  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


MA2552 Introduction to Computing (DLI) 2023/24

Computational Project

Aims and Intended Learning Outcomes

The aims of the Project are to describe methods for solving given computational problems, develop and test Matlab code implementing the methods, and demonstrate application

of the code to solving a specific computational problem. In this Project, you be will be required to demonstrate

• ability to investigate a topic through guided independent research, using resources

available on the internet and/or in the library;

• understanding of the researched material;

• implementation of the described methods in Matlab;

• use of the implemented methods on test examples;

• ability to present the studied topic and your computations in a written Project Report.

Plagiarism and Declaration

• This report should be your independent work. You should not seek help from other

students or provide such help to other students. All sources you used in preparing your

report should be listed in the References section at the end of your report and referred

to as necessary throughout the report.

• Your Project Report must contain the following Declaration (after the title page):

DECLARATION

All sentences or passages quoted in this Project Report from other people’s work have

been specifically acknowledged by clear and specific cross referencing to author, work and

page(s), or website link. I understand that failure to do so amounts to plagiarism and

will be considered grounds for failure in this module and the degree as a whole.

Name:

Signed: (name, if submitted electronically)

Date:

Project Report

The report should be about 6-8 pages long, written in Word or Latex. Equations should

be properly formatted and cross-referenced, if necessary. All the code should be included in

the report. Copy and paste from MATLAB Editor or Command Window and choose ‘Courier

New’ or another fixed-width font. The Report should be submitted via Blackboard in a single

file (Word document or Adobe PDF) and contain answers to the following questions:

1

MA2552 Introduction to Computing (DLI) 2023/24

Part 0: Context

Let f(x) be a periodic function. The goal of this project is to implement a numerical method

for solving the following family of ordinary differential equations (O.D.E):

an

d

nu(x)

dxn

+ an−1

d

n−1u(x)

dxn−1

+ . . . + a0u(x) = f(x), (1)

where ak, k = 0, · · · , n, are real-valued constants. The differential equation is complemented

with periodic boundary conditions:

d

ku(−π)

dxk

=

d

ku(π)

dxk

for k = 0, · · · , n − 1.

We aim to solve this problem using a trigonometric function expansion.

Part 1: Basis of trigonometric functions

Let u(x) be a periodic function with period 2π. There exist coefficients α0, α1, α2, . . ., and

β1, β2, . . . such that

u(x) = X∞

k=0

αk cos(kx) +X∞

1

βk sin(kx).

The coefficients αk and βk can be found using the following orthogonality properties:

Z π

−π

cos(kx) sin(nx) dx = 0, for any k, n

Z π

−π

cos(kx) cos(nx) dx =

ɽ**;?**0;

ɽ**;?**1;

0 if k ̸= n

π if k = n ̸= 0

2π if k = n = 0.

Z π

−π

sin(kx) sin(nx) dx =

(

0 if k ̸= n

π if k = n ̸= 0.

1. Implement a function that takes as an input two function handles f and g, and an

array x, and outputs the integral

1

π

Z π

−π

f(x)g(x) dx,

using your own implementation of the Simpson’s rule scheme. Corroborate numerically

the orthogonality properties above for different values of k and n.

2. Show that

αk =

(

1

π

R π

−π

u(x) cos(kx) dx if k ̸= 0

1

R π

−π

u(x) dx if k = 0

βk =

1

π

Z π

π

u(x) sin(kx) dx.

2

MA2552 Introduction to Computing (DLI) 2023/24

3. Using question 1 and 2, write a function that given a function handle u and an integer

m, outputs the array [α0, α1 . . . , αm, β1, . . . , βm].

4. Write a function that given an array [α0, α1 . . . , αm, β1, . . . , βm], outputs (in the form

of an array) the truncated series

um(x) := Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx), (2)

where x is a linspace array on the interval [−π, π].

5. Using the function from question 3, compute the truncated series um(x) of the following

functions:

• u(x) = sin3

(x)

• u(x) = |x|

• u(x) = (

x + π, for x ∈ [−π, 0]

x − π, for x ∈ [0, π]

,

and using question 4, plot u(x) and um(x) for different values of m.

6. Carry out a study of the error between u(x) and um(x) for ∥u(x)−um(x)∥p with p = 2

and then with p = ∞. What do you observe?

Part 2: Solving the O.D.E

Any given periodic function u(x) can be well approximated by its truncate series expansion (2) if m is large enough. Thus, to solve the ordinary differential equation (1)

one can approximate u(x) by um(x):

u(x) ≈

Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx),

Since um(x) is completely determined by its coefficients [α0, α1 . . . , αm, β1, . . . , βm],

to solve (1) numerically, one could build a system of equations for determining these

coefficients.

7. Explain why under the above approximation, the boundary conditions of (1) are automatically satisfied.

8. We have that

dum(x)

dx =

Xm

k=0

γk cos(kx) +Xm

k=1

ηk sin(kx)

Write a function that takes as input the integer m, and outputs a square matrix D that

maps the coefficients [α0, . . . , αm, β1, . . . , βm] to the coefficients [γ0, . . . , γm, η1, . . . , ηm].

3

MA2552 Introduction to Computing (DLI) 2023/24

9. Write a function that given a function handler f and the constants ak, solves the

O.D.E. (1). Note that some systems might have an infinite number of solutions. In

that case your function should be able identify such cases.

10. u(x) = cos(sin(x)) is the exact solution for f(x) = sin(x) sin(sin(x))−cos(sin(x)) (cos2

(x) + 1),

with a2 = 1, a0 = −1 and ak = 0 otherwise. Plot the p = 2 error between your numerical solution and u(x) for m = 1, 2, . . .. Use a log-scale for the y-axis. At what rate

does your numerical solution converge to the exact solution?

11. Show your numerical solution for different f(x) and different ak of your choice.

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:INT3095代做、代寫Artificial Intelligence語言編程
  • 下一篇:代寫MGMT20005、代做Decision Analysis程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    釘釘簽到打卡位置修改神器,2026怎么修改定位在范圍內
    釘釘簽到打卡位置修改神器,2026怎么修改定
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
  • 短信驗證碼 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                中文在线第一页| 欧美日韩国产精品综合 | 国产专区第一页| 国产精品久久久久久久av| 国产美女www爽爽爽| 久久久久99精品成人片三人毛片 | 中文字幕视频二区| 91国产精品视频在线观看| www国产一区| 精品少妇久久久| 欧美一级特黄视频| 中文字幕在线视频一区二区| h色网站在线观看| 九九热国产视频| 亚洲18在线看污www麻豆| 免费观看一区二区三区| 亚洲va在线观看| 岛国av中文字幕| 欧美一区二不卡视频| 中文字幕乱码在线| 国产三区在线播放| 手机在线观看日韩av| ass极品水嫩小美女ass| 久久黄色免费视频| 中文字幕精品亚洲| 国产美女喷水视频| 婷婷色一区二区三区| 朝桐光av在线| 日韩精品人妻中文字幕有码| 亚洲综合在线一区二区| 九九热精品在线播放| 新91视频在线观看| 国产九九九视频| 性欧美在线视频| 国产精品一区二区三区四| 日韩成人一区二区三区| www.久久av| 日本成人免费视频| 朝桐光av在线一区二区三区| 日韩精品在线免费视频| 高清国产mv在线观看| 三级av在线免费观看| 国产69精品久久久久久久久久| 欧美美女一级片| 亚洲天堂2021av| 日韩av在线天堂| 国产成人三级在线播放| 少妇人妻偷人精品一区二区| 国产成人愉拍精品久久| 亚洲av成人片色在线观看高潮| 国产无遮挡又黄又爽又色视频 | 日本精品一区二区在线观看| 999久久久国产| 色欲av伊人久久大香线蕉影院| 成人无码精品1区2区3区免费看| 三级小视频在线观看| 国产嫩草在线观看| 亚洲精品国产av| 国产免费的av| 中文字幕一区二区三区四区欧美 | 国产精品伦子伦| 一区二区国产欧美| 欧美日韩黄色网| 国产农村妇女aaaaa视频| 最近中文字幕在线免费观看| 日本一级淫片免费放| 国产一级免费观看| www.好吊色| 亚洲经典一区二区三区| 视频免费1区二区三区| 精品久久久中文字幕人妻| 一本色道久久综合精品婷婷| 香蕉久久久久久久| 潘金莲激情呻吟欲求不满视频| 国产一级片久久| 国产av人人夜夜澡人人爽| 亚洲欧美日韩色| 五月婷婷六月激情| 日本久久久久久久久久| 国产一级片免费观看| 国产91av视频| 成熟人妻av无码专区| 亚洲一级中文字幕| 中文字幕日韩第一页| 天天干天天操天天爱| 人人妻人人澡人人爽人人精品| 精品久久久久一区二区| 国产老熟女伦老熟妇露脸| 91嫩草丨国产丨精品| 中文字幕国产在线观看| 十八禁一区二区三区| 日本亚洲欧美在线| 欧美视频久久久| 久草视频在线资源站| 国产女人18毛片18精品| 国产成人综合欧美精品久久| www.色天使| av一级黄色片| √资源天堂中文在线| 亚洲一二区在线观看| 亚洲一区二区乱码| 亚洲自拍一区在线观看| 91av国产精品| 69精品久久久| 丰满岳乱妇国产精品一区| 国产 欧美 精品| 国产精品黄色网| 国产日韩在线免费观看| 国精品无码一区二区三区| 激情五月婷婷小说| 一级黄色免费看| 亚洲一二三不卡| www.色就是色| 国产熟女高潮一区二区三区| 国产一区二区视频免费观看| 精品国产999久久久免费| 久久久久99精品成人| 欧美日韩中文不卡| 色综合免费视频| 伊人在线视频观看| 亚洲日本久久久| 波多野结衣一区二区三区四区| 国产精品久免费的黄网站| 国精品人伦一区二区三区蜜桃| 久久久久97国产| 三级全黄做爰视频| 中文字幕一区二区人妻在线不卡| 一本加勒比波多野结衣| 国产精品日日夜夜| 蜜臀av午夜精品| 婷婷激情五月综合| 亚洲一区精品视频在线观看| www.激情五月| 久久久久亚洲av无码专区首jn| 日本在线不卡一区二区| 亚洲激情在线观看视频| 丰满少妇高潮在线观看| 免费a级黄色片| 中文字幕黄色av| 国产极品久久久| 人妻少妇精品一区二区三区| 中文国产在线观看| 国产精品一区二区人人爽| 日本二区在线观看| 亚洲欧美激情网| 国内自拍视频在线播放| 神马午夜电影一区二区三区在线观看 | 懂色av蜜臀av粉嫩av永久| 精品无码久久久久久久| 少妇无套内谢久久久久| 亚洲乱妇老熟女爽到高潮的片| 国产精品人人爽人人爽| 日韩av片免费观看| 99热这里只有精品1| 久久久久久久久久成人| 中文字幕av观看| 国产乱人乱偷精品视频a人人澡| 日韩精品xxx| 特黄一区二区三区| 91亚洲国产成人精品一区| 久久偷拍免费视频| 亚洲免费在线视频观看| 国产在线观看你懂的| 香蕉免费毛片视频| 黄色一级片免费的| 中文字幕在线国产| 久久国产精品国产精品| 亚洲精品乱码久久久久久动漫| 久久99精品波多结衣一区| 亚洲国产日韩在线观看| 久久久久99精品成人片三人毛片| 亚洲精品乱码久久久久久久久久久久 | 成人欧美一区二区三区黑人一| 欧美成人另类视频| 99久久久久成人国产免费| 日韩人妻无码一区二区三区| aaa在线视频| 午夜精品久久久久久久第一页按摩 | 亚洲v在线观看| 九九视频免费看| 亚洲天堂一区在线| 日本免费福利视频| 国产免费一区二区三区最新6| 一区视频免费观看| 蜜桃在线一区二区| 国产91精品看黄网站在线观看| 午夜影院免费观看视频| 久草视频手机在线| av网站在线观看免费| 亚洲GV成人无码久久精品| 九九热在线视频播放| 波多野结衣av在线观看| 亚洲AV无码精品自拍| 久久久久久蜜桃| 岛国精品一区二区三区| 亚洲国产成人在线观看| 日韩精品在线免费视频| 久草中文在线视频| 国产免费视频一区二区三区| 91高清免费看|