99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

MA2552代做、代寫Matlab編程語言

時間:2023-12-19  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


MA2552 Introduction to Computing (DLI) 2023/24

Computational Project

Aims and Intended Learning Outcomes

The aims of the Project are to describe methods for solving given computational problems, develop and test Matlab code implementing the methods, and demonstrate application

of the code to solving a specific computational problem. In this Project, you be will be required to demonstrate

• ability to investigate a topic through guided independent research, using resources

available on the internet and/or in the library;

• understanding of the researched material;

• implementation of the described methods in Matlab;

• use of the implemented methods on test examples;

• ability to present the studied topic and your computations in a written Project Report.

Plagiarism and Declaration

• This report should be your independent work. You should not seek help from other

students or provide such help to other students. All sources you used in preparing your

report should be listed in the References section at the end of your report and referred

to as necessary throughout the report.

• Your Project Report must contain the following Declaration (after the title page):

DECLARATION

All sentences or passages quoted in this Project Report from other people’s work have

been specifically acknowledged by clear and specific cross referencing to author, work and

page(s), or website link. I understand that failure to do so amounts to plagiarism and

will be considered grounds for failure in this module and the degree as a whole.

Name:

Signed: (name, if submitted electronically)

Date:

Project Report

The report should be about 6-8 pages long, written in Word or Latex. Equations should

be properly formatted and cross-referenced, if necessary. All the code should be included in

the report. Copy and paste from MATLAB Editor or Command Window and choose ‘Courier

New’ or another fixed-width font. The Report should be submitted via Blackboard in a single

file (Word document or Adobe PDF) and contain answers to the following questions:

1

MA2552 Introduction to Computing (DLI) 2023/24

Part 0: Context

Let f(x) be a periodic function. The goal of this project is to implement a numerical method

for solving the following family of ordinary differential equations (O.D.E):

an

d

nu(x)

dxn

+ an−1

d

n−1u(x)

dxn−1

+ . . . + a0u(x) = f(x), (1)

where ak, k = 0, · · · , n, are real-valued constants. The differential equation is complemented

with periodic boundary conditions:

d

ku(−π)

dxk

=

d

ku(π)

dxk

for k = 0, · · · , n − 1.

We aim to solve this problem using a trigonometric function expansion.

Part 1: Basis of trigonometric functions

Let u(x) be a periodic function with period 2π. There exist coefficients α0, α1, α2, . . ., and

β1, β2, . . . such that

u(x) = X∞

k=0

αk cos(kx) +X∞

1

βk sin(kx).

The coefficients αk and βk can be found using the following orthogonality properties:

Z π

−π

cos(kx) sin(nx) dx = 0, for any k, n

Z π

−π

cos(kx) cos(nx) dx =

ɽ**;?**0;

ɽ**;?**1;

0 if k ̸= n

π if k = n ̸= 0

2π if k = n = 0.

Z π

−π

sin(kx) sin(nx) dx =

(

0 if k ̸= n

π if k = n ̸= 0.

1. Implement a function that takes as an input two function handles f and g, and an

array x, and outputs the integral

1

π

Z π

−π

f(x)g(x) dx,

using your own implementation of the Simpson’s rule scheme. Corroborate numerically

the orthogonality properties above for different values of k and n.

2. Show that

αk =

(

1

π

R π

−π

u(x) cos(kx) dx if k ̸= 0

1

R π

−π

u(x) dx if k = 0

βk =

1

π

Z π

−π

u(x) sin(kx) dx.

2

MA2552 Introduction to Computing (DLI) 2023/24

3. Using question 1 and 2, write a function that given a function handle u and an integer

m, outputs the array [α0, α1 . . . , αm, β1, . . . , βm].

4. Write a function that given an array [α0, α1 . . . , αm, β1, . . . , βm], outputs (in the form

of an array) the truncated series

um(x) := Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx), (2)

where x is a linspace array on the interval [−π, π].

5. Using the function from question 3, compute the truncated series um(x) of the following

functions:

• u(x) = sin3

(x)

• u(x) = |x|

• u(x) = (

x + π, for x ∈ [−π, 0]

x − π, for x ∈ (0, π]

,

and using question 4, plot u(x) and um(x) for different values of m.

6. Carry out a study of the error between u(x) and um(x) for ∥u(x)−um(x)∥p with p = 2

and then with p = ∞. What do you observe?

Part 2: Solving the O.D.E

Any given periodic function u(x) can be well approximated by its truncate series expansion (2) if m is large enough. Thus, to solve the ordinary differential equation (1)

one can approximate u(x) by um(x):

u(x) ≈

Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx),

Since um(x) is completely determined by its coefficients [α0, α1 . . . , αm, β1, . . . , βm],

to solve (1) numerically, one could build a system of equations for determining these

coefficients.

7. Explain why under the above approximation, the boundary conditions of (1) are automatically satisfied.

8. We have that

dum(x)

dx =

Xm

k=0

γk cos(kx) +Xm

k=1

ηk sin(kx)

Write a function that takes as input the integer m, and outputs a square matrix D that

maps the coefficients [α0, . . . , αm, β1, . . . , βm] to the coefficients [γ0, . . . , γm, η1, . . . , ηm].

3

MA2552 Introduction to Computing (DLI) 2023/24

9. Write a function that given a function handler f, an integer m, and the constants

ak, solves the O.D.E. (1). Note that some systems might have an infinite number of

solutions. In that case your function should be able identify such cases.

10. u(x) = cos(sin(x)) is the exact solution for f(x) = sin(x) sin(sin(x))−cos(sin(x)) (cos2

(x) + 1),

with a2 = 1, a0 = −1 and ak = 0 otherwise. Plot the p = 2 error between your numerical solution and u(x) for m = 1, 2, . . .. Use a log-scale for the y-axis. At what rate

does your numerical solution converge to the exact solution?

11. Show your numerical solution for different f(x) and different ak of your choice.

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:代寫CE335編程、代做Python,C++程序設計
  • 下一篇:COMP528代寫、代做c/c++編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                亚洲欧美日韩国产手机在线 | 亚洲最新视频在线观看| 性感美女久久精品| 色婷婷国产精品久久包臀 | 久久看人人爽人人| 国产老肥熟一区二区三区| 日韩欧美国产三级| 国产一区二区三区免费在线观看| 精品国产一区二区三区久久影院| 99久久国产综合精品女不卡| 日本欧美一区二区| 18欧美亚洲精品| 欧美一区二区三区色| 成人av中文字幕| 蜜桃一区二区三区四区| 国产精品久久久久久久久搜平片 | 欧美xxxx老人做受| 91在线精品一区二区三区| 奇米影视在线99精品| 亚洲免费av在线| 中文字幕精品综合| 欧美电视剧免费全集观看| 91麻豆福利精品推荐| 国产精品白丝jk白祙喷水网站 | 午夜私人影院久久久久| 国产精品视频yy9299一区| 日韩欧美三级在线| 欧美日韩一二三区| 欧美亚洲尤物久久| 91久久免费观看| caoporm超碰国产精品| 国产乱子伦视频一区二区三区| 亚洲国产精品久久一线不卡| 国产精品成人网| 国产欧美日韩麻豆91| 日韩欧美成人午夜| 91精品国产综合久久精品图片| 色伊人久久综合中文字幕| 99综合电影在线视频| 国产麻豆午夜三级精品| 激情综合色丁香一区二区| 免费观看91视频大全| 免费亚洲电影在线| 日本成人中文字幕在线视频| 亚洲影视资源网| 亚洲美女视频在线| 一区二区三区精品视频在线| 洋洋av久久久久久久一区| 亚洲国产精品久久人人爱| 亚洲第一激情av| 日本网站在线观看一区二区三区 | 成人app网站| 成人黄色在线网站| 色网综合在线观看| 91电影在线观看| 欧美酷刑日本凌虐凌虐| 日韩一级二级三级精品视频| 欧美成人精品3d动漫h| 久久影视一区二区| 中文字幕第一页久久| 亚洲视频在线观看三级| 亚洲国产精品一区二区久久恐怖片| 五月天丁香久久| 国产乱码精品一区二区三区av | 日本中文在线一区| 国产一区二区三区免费观看| 国产高清视频一区| 91香蕉视频污| 3d动漫精品啪啪1区2区免费| 精品国产一区二区三区久久影院 | 日韩高清在线电影| 国产精品自拍av| 色老综合老女人久久久| 在线成人高清不卡| 日韩精品最新网址| 亚洲同性gay激情无套| 三级欧美在线一区| 国产精品一区二区免费不卡| www.视频一区| 日韩美女在线视频| 亚洲日穴在线视频| 激情丁香综合五月| 色菇凉天天综合网| 久久一留热品黄| 亚洲成人综合视频| 成人晚上爱看视频| 欧美精品1区2区3区| 中文字幕一区二区三区蜜月| 一区二区三区电影在线播| 一区二区免费在线| 国产成人免费视频精品含羞草妖精 | 成人欧美一区二区三区在线播放| 亚洲一区二区三区美女| 国产精品一级片| 9191久久久久久久久久久| 国产精品大尺度| 国产美女av一区二区三区| 91精品国产综合久久久蜜臀粉嫩| 国产精品亲子乱子伦xxxx裸| 美国十次综合导航| 欧美久久久久中文字幕| 成人欧美一区二区三区视频网页| 激情文学综合插| 欧美日韩国产高清一区二区三区| 国产精品毛片无遮挡高清| 久久99久久久欧美国产| 欧美日韩国产一级片| 亚洲精品欧美激情| 成人性生交大片免费看在线播放| 精品久久久久久无| 麻豆一区二区99久久久久| 欧美乱妇15p| 亚洲第一二三四区| 欧美午夜免费电影| 亚洲成a人在线观看| 欧美精选一区二区| 日韩av不卡在线观看| 4hu四虎永久在线影院成人| 亚洲五月六月丁香激情| 欧美私模裸体表演在线观看| 一区二区日韩电影| 欧美日韩一区二区三区不卡| 婷婷一区二区三区| 欧美一级欧美三级| 黄页视频在线91| 久久精品夜色噜噜亚洲a∨| 国产九色sp调教91| 中文字幕精品—区二区四季| av资源站一区| 亚洲国产一区二区三区青草影视| 欧美美女网站色| 久久99久久久久| www国产成人| a美女胸又www黄视频久久| 一区二区三区中文在线观看| 欧美美女一区二区| 国产露脸91国语对白| 中文字幕国产一区| 972aa.com艺术欧美| 亚洲成av人片| 久久免费偷拍视频| 99久久久国产精品| 日韩影视精彩在线| 欧美激情一区三区| 欧美三级电影在线观看| 狠狠色狠狠色综合系列| 亚洲素人一区二区| 777亚洲妇女| 99在线热播精品免费| 日本免费在线视频不卡一不卡二 | 亚洲视频一区二区在线观看| 欧美三级中文字幕在线观看| 蜜臀av性久久久久蜜臀aⅴ四虎| 欧美国产97人人爽人人喊| 91黄色免费看| 国内精品在线播放| 中文字幕色av一区二区三区| 欧美日韩激情在线| 高清不卡一区二区| 亚洲国产va精品久久久不卡综合 | 26uuu精品一区二区在线观看| 成人不卡免费av| 免费看日韩a级影片| 亚洲人成小说网站色在线| 精品国产青草久久久久福利| 欧美在线视频不卡| av在线不卡观看免费观看| 久久精品国产77777蜜臀| 亚洲精品成a人| 中文av字幕一区| 欧美一区二区三区系列电影| 色哟哟精品一区| 成人国产精品免费观看视频| 国产一区二区三区不卡在线观看| 亚洲成人激情av| 亚洲日本一区二区| 国产日产亚洲精品系列| 日韩欧美国产一二三区| 欧美久久久久久久久久| 91福利国产成人精品照片| 成人黄色免费短视频| 国产高清精品在线| 国产盗摄女厕一区二区三区| 久久精品国产亚洲aⅴ| 亚洲成人免费在线观看| 亚洲精品国产第一综合99久久| 国产女人aaa级久久久级 | 成人一区在线观看| 国产在线视频一区二区| 麻豆一区二区三| 久久精品99国产精品日本| 日本不卡中文字幕| 首页欧美精品中文字幕| 午夜精品在线看| 亚洲大片免费看| 偷拍自拍另类欧美| 首页国产欧美久久| 日本亚洲电影天堂| 精品一区二区三区久久| 精品系列免费在线观看|