99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

COMP528代寫、代做c/c++編程設(shè)計

時間:2023-12-19  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯


In this assignment, you are asked to implement 2 algorithms for the Travelling Salesman

Problem. This document explains the operations in detail, so you do not need previous

knowledge. You are encouraged to start this as soon as possible. Historically, as the deadline nears, the queue times on Barkla grow as more submissions are tested. You are also

encouraged to use your spare time in the labs to receive help, and clarify any queries you

have regarding the assignment.

1 The Travelling Salesman Problem (TSP)

The travelling salesman problem is a problem that seeks to answer the following question:

‘Given a list of vertices and the distances between each pair of vertices, what is the shortest

possible route that visits each vertex exactly once and returns to the origin vertex?’.

(a) A fully connected graph (b) The shortest route around all vertices

Figure 1: An example of the travelling salesman problem

The travelling salesman problem is an NP-hard problem, that meaning an exact solution

cannot be solved in polynomial time. However, there are polynomial solutions that can

be used which give an approximation of the shortest route between all vertices. In this

assignment you are asked to implement 2 of these.

1.1 Terminology

We will call each point on the graph the vertex. There are 6 vertices in Figure 1.

We will call each connection between vertices the edge. There are 15 edges in Figure 1.z

We will call two vertices connected if they have an edge between them.

The sequence of vertices that are visited is called the tour. The tour for Figure 1(b) is

(1, 3, 5, 6, 4, 2, 1). Note the tour always starts and ends at the origin vertex.

A partial tour is a tour that has not yet visited all the vertices.

202**024 1

COMP528

2 The solutions

2.1 Preparation of Solution

You are given a number of coordinate files with this format:

x, y

4.81263062**6921, 8.3**19930253777

2.**156816804616, 0.39593575612759

1.13649642931556, 2.2**59458630845

4.4**7**99682118, 2.9749120444**06

9.8****616851393, 9.107****070**

Figure 2: Format of a coord file

Each line is a coordinate for a vertex, with the x and y coordinate being separated by a

comma. You will need to convert this into a distance matrix.

0.000000 8.177698 7.099481 5.381919 5.0870**

8.177698 0.000000 2.577029 3.029315 11.138848

7.099481 2.577029 0.000000 3.426826 11.068045

5.381919 3.029315 3.426826 0.000000 8.139637

5.0870** 11.138848 11.068045 8.139637 0.000000

Figure 3: A distance matrix for Figure 2

To convert the coordinates to a distance matrix, you will need make use of the euclidean

distance formula.

d =

q

(xi − xj )

2 + (yi − yj )

2

(1)

Figure 4: The euclidean distance formula

Where: d is the distance between 2 vertices vi and vj

, xi and yi are the coordinates of the

vertex vi

, and xj and yj are the coordinates of the vertex vj

.

202**024 2

COMP528

2.2 Cheapest Insertion

The cheapest insertion algorithm begins with two connected vertices in a partial tour. Each

step, it looks for a vertex that hasn’t been visited, and inserts it between two connected

vertices in the tour, such that the cost of inserting it between the two connected vertices is

minimal.

These steps can be followed to implement the cheapest insertion algorithm. Assume that the

indices i, j, k etc. are vertex labels, unless stated otherwise. In a tiebreak situation, always

pick the lowest index or indices.

1. Start off with a vertex vi

.

Figure 5: Step 1 of Cheapest Insertion

2. Find a vertex vj such that the dist(vi

, vj ) is minimal, and create a partial tour (vi

, vj

, vi)

Figure 6: Step 2 of Cheapest Insertion

3. Find two connected vertices (vn, vn+1), where n is a position in the partial tour, and

vk that has not been visited. Insert vk between vn and vn+1 such that dist(vn, vk) +

dist(vn+1, vk) − dist(vn, vn+1) is minimal.

202**024 3

COMP528

Figure 7: Step 3 of Cheapest Insertion

4. Repeat step 3 until all vertices have been visited, and are in the tour.

Figure 8: Step 4 of Cheapest Insertion

Figure 9: Final step and tour of Cheapest Insertion. Tour Cost = 11

2.3 Farthest Insertion

The farthest insertion algorithm begins with two connected vertices in a partial tour. Each

step, it checks for the farthest vertex not visited from any vertex within the partial tour, and

then inserts it between two connected vertices in the partial tour where the cost of inserting

it between the two connected vertices is minimal.

202**024 4

COMP528

These steps can be followed to implement the farthest insertion algorithm. Assume that the

indices i, j, k etc. are vertex labels unless stated otherwise. In a tiebreak situation, always

pick the lowest index(indices).

1. Start off with a vertex vi

.

Figure 10: Step 1 of Farthest Insertion

2. Find a vertex vj such that dist(vi

, vj ) is maximal, and create a partial tour (vi

, vj

, vi).

Figure 11: Step 2 of Farthest Insertion

3. For each vertex vn in the partial tour, where n is a position in the partial tour, find an

unvisited vertex vk such that dist(vn, vk) is maximal.

Figure 12: Step 3 of Farthest Insertion

202**024 5

COMP528

4. Insert vk between two connected vertices in the partial tour vn and vn+1, where n is

a position in the partial tour, such that dist(vn, vk) + dist(vn+1, vk) − dist(vn, vn+1) is

minimal.

Figure 13: Step 4 of Farthest Insertion

5. Repeat steps 3 and 4 until all vertices have been visited, and are in the tour.

Figure 14: Step 3(2) of Farthest Insertion

Figure 15: Step 4(2) of Farthest Insertion

202**024 6

COMP528

Figure 16: Final step and tour of Farthest Insertion. Tour Cost = 11

3 Running your programs

Your program should be able to be ran like so:

./<program name >. exe <c o o r d i n a t e f i l e n a m e > <o u t p u t fil e n am e >

Therefore, your program should accept a coordinate file, and an output file as arguments.

Note that C considers the first argument as the program executable.

Both implementations should read a coordinate file, run either cheapest insertion or farthest

insertion, and write the tour to the output file.

3.1 Provided Code

You are provided with code that can read the coordinate input from a file, and write the

final tour to a file. This is located in the file coordReader.c. You will need to include this

file when compiling your programs.

The function readNumOfCoords() takes a filename as a parameter and returns the number

of coordinates in the given file as an integer.

The function readCoords() takes the filename and the number of coordinates as parameters,

and returns the coordinates from a file and stores it in a two-dimensional array of doubles,

where coords[i ][0] is the x coordinate for the ith coordinate, and coords[i ][1] is the y

coordinate for the ith coordinate.

The function writeTourToFile() takes the tour, the tour length, and the output filename

as parameters, and writes the tour to the given file.

202**02**

University of Liverpool Continuous Assessment 1 COMP528

4 Instructions

• Implement a serial solution for the cheapest insertion and the farthest insertion. Name

these: cInsertion.c, fInsertion.c.

• Implement a parallel solution, using OpenMP, for the cheapest insertion and the farthest insertion. Name these: ompcInsertion.c, ompfInsertion.c.

• Create a Makefile and call it ”Makefile” which performs as the list states below. Without the Makefile, your code will not grade on CodeGrade (see more in section 5.1).

– make ci compiles cInsertion.c and coordReader.c into ci.exe with the GNU compiler

– make fi compiles fInsertion.c and coordReader.c into fi.exe with the GNU compiler

– make comp compiles ompcInsertion.c and coordReader.c into comp.exe with the

GNU compiler

– make fomp compiles ompfInsertion.c and coordReader.c into fomp.exe with the

GNU compiler

– make icomp compiles ompcInsertion.c and coordReader.c into icomp.exe with

the Intel compiler

– make ifomp compiles ompfInsertion.c and coordReader.c into ifomp.exe the Intel

compiler.

• Test each of your parallel solutions using 1, 2, 4, 8, 16, and ** threads, recording

the time it takes to solve each one. Record the start time after you read from the

coordinates file, and the end time before you write to the output file. Do all testing

with the large data file.

• Plot a speedup plot with the speedup on the y-axis and the number of threads on the

x-axis for each parallel solution.

• Plot a parallel efficiency plot with parallel efficiency on the y-axis and the number of

threads on the x-axis for each parallel solution.

• Write a report that, for each solution, using no more than 1 page per solution,

describes: your serial version, and your parallelisation strategy

• In your report, include: the speedup and parallel efficiency plots, how you conducted

each measurement and calculation to plot these, and sreenshots of you compiling and

running your program. These do not contribute to the page limit

202**024 8

COMP528

• Your final submission should be uploaded onto CodeGrade. The files you

upload should be:

– Makefile

– cInsertion.c

– fInsertion.c

– ompcInsertion.c

– ompfInsertion.c

– report.pdf

5 Hints

You can also parallelise the conversion of the coordinates to the distance matrix.

When declaring arrays, it’s better to use dynamic memory allocation. You can do this by...

int ∗ o n e d a r ra y = ( int ∗) malloc ( numOfElements ∗ s i z e o f ( int ) ) ;

For a 2-D array:

int ∗∗ twod a r ra y = ( int ∗∗) malloc ( numOfElements ∗ s i z e o f ( int ∗ ) ) ;

for ( int i = 0 ; i < numOfElements ; i ++){

twod a r ra y [ i ] = ( int ∗) malloc ( numOfElements ∗ s i z e o f ( int ) ) ;

}

5.1 Makefile

You are instructed to use a MakeFile to compile the code in any way you like. An example

of how to use a MakeFile can be used here:

{make command } : { t a r g e t f i l e s }

{compile command}

c i : c I n s e r t i o n . c coordReader . c

gcc c I n s e r t i o n . c coordReader . c −o c i . exe −lm

Now, in the Linux environment, in the same directory as your Makefile, if you type ‘make ci‘,

the compile command is automatically executed. It is worth noting, the compile command

must be indented. The target files are the files that must be present for the make command

to execute.

202**024 9

COMP528

6 Marking scheme

1 Code that compiles without errors or warnings 15%

2 Same numerical results for test cases 20%

3 Speedup plot 10%

4 Parallel Efficiency Plot 10%

5 Parallel efficiency up to ** threads 15%

6 Speed of program 10%

11 Clean code and comments 10%

12 Report 10%

Table 1: Marking scheme

7 Deadline

202**024 10

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:MA2552代做、代寫Matlab編程語言
  • 下一篇:代寫選股公式 代做通達(dá)信量中尋莊副圖指標(biāo)
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士1號線
    合肥機(jī)場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                欧美国产精品专区| 午夜久久电影网| 国产精品天美传媒| 亚洲国产视频直播| 国产成人免费在线观看| 欧洲另类一二三四区| 久久久久国产精品免费免费搜索| 亚洲综合在线第一页| 国产精品自在欧美一区| 欧美日本高清视频在线观看| 136国产福利精品导航| 极品少妇xxxx精品少妇| 欧美亚洲国产bt| 国产精品日韩成人| 久久99国产精品成人| 欧美精选一区二区| 亚洲在线免费播放| 91蜜桃视频在线| 中文字幕乱码久久午夜不卡| 另类的小说在线视频另类成人小视频在线 | 国产精品久久久爽爽爽麻豆色哟哟 | 欧美国产精品v| 亚洲1区2区3区4区| 色噜噜夜夜夜综合网| 国产日韩高清在线| 国精品**一区二区三区在线蜜桃| 欧美日本在线视频| 亚洲综合视频在线| 色婷婷av一区二区三区大白胸| 国产欧美日韩精品一区| 国产一区二区免费视频| 欧美电影免费观看高清完整版在| 天堂一区二区在线| 在线电影欧美成精品| 亚洲超碰精品一区二区| 在线免费观看日韩欧美| 一区二区三区中文免费| 91福利精品视频| 亚洲一区二区美女| 欧美日韩aaaaaa| 日本女优在线视频一区二区| 8x福利精品第一导航| 日本中文字幕不卡| 日韩精品一区二区在线观看| 另类小说图片综合网| 久久一留热品黄| 成人性色生活片免费看爆迷你毛片| 国产偷国产偷亚洲高清人白洁| 国产不卡视频在线播放| 国产精品福利一区| 在线国产亚洲欧美| 日韩在线a电影| 日韩色视频在线观看| 国内一区二区在线| 国产色婷婷亚洲99精品小说| 波多野结衣欧美| 一个色在线综合| 欧美一区二区成人6969| 久久国产尿小便嘘嘘尿| 国产视频视频一区| 91在线视频免费观看| 亚洲自拍偷拍麻豆| 欧美成人精品二区三区99精品| 国产综合成人久久大片91| 国产偷v国产偷v亚洲高清| 91在线精品一区二区| 亚洲资源在线观看| www国产亚洲精品久久麻豆| 成人黄色片在线观看| 亚洲一区欧美一区| 欧美成人一级视频| 在线亚洲一区观看| 精品亚洲国内自在自线福利| 亚洲国产精品精华液2区45| 在线日韩一区二区| 国产成人在线视频免费播放| 亚洲一区二区三区三| 久久―日本道色综合久久| 91麻豆福利精品推荐| 另类综合日韩欧美亚洲| 亚洲精品写真福利| 精品国产三级电影在线观看| 日本韩国欧美一区| 国产酒店精品激情| 丝袜美腿亚洲色图| 亚洲色图在线视频| 久久久久国产成人精品亚洲午夜| 欧美性猛交xxxx乱大交退制版| 国内精品免费**视频| 亚洲午夜在线视频| 中文字幕人成不卡一区| 精品噜噜噜噜久久久久久久久试看| 色综合久久88色综合天天6 | 国产成人午夜片在线观看高清观看| 亚洲女与黑人做爰| 久久嫩草精品久久久精品一| 欧美日韩国产小视频在线观看| 国产精品一卡二卡| 男人的天堂亚洲一区| 一区二区三区在线视频免费观看| 久久免费看少妇高潮| 91精品国产色综合久久不卡蜜臀 | 国产午夜三级一区二区三| 欧美另类z0zxhd电影| 97久久精品人人做人人爽| 国产精品一卡二卡在线观看| 日本三级韩国三级欧美三级| 又紧又大又爽精品一区二区| 国产精品灌醉下药二区| 国产日韩欧美精品一区| 久久影院午夜论| 精品国内二区三区| 日韩午夜精品视频| 欧美一区二区免费视频| 欧美日韩国产大片| 欧美怡红院视频| 日本精品视频一区二区三区| 972aa.com艺术欧美| 成人黄色av网站在线| 成人午夜精品在线| 国产91高潮流白浆在线麻豆| 国产精品白丝jk黑袜喷水| 国产精品一卡二卡在线观看| 国产精品综合一区二区三区| 国产高清不卡一区| 丰满亚洲少妇av| 99久精品国产| 色综合天天性综合| 一本到一区二区三区| 97se狠狠狠综合亚洲狠狠| 91丨porny丨中文| 色爱区综合激月婷婷| 欧洲av在线精品| 5858s免费视频成人| 欧美成人性战久久| 国产欧美日韩在线看| 国产精品视频麻豆| 中文字幕一区不卡| 亚洲一区二区av在线| 日本欧美大码aⅴ在线播放| 蜜桃视频一区二区三区在线观看| 韩国中文字幕2020精品| 丰满白嫩尤物一区二区| 色综合网站在线| 欧美一级夜夜爽| 国产三级欧美三级日产三级99 | 国产精品麻豆欧美日韩ww| 国产精品视频九色porn| 亚洲精品日产精品乱码不卡| 日韩主播视频在线| 国产在线播放一区| av爱爱亚洲一区| 欧美精选午夜久久久乱码6080| 日韩欧美国产午夜精品| 国产日韩精品视频一区| 亚洲一级在线观看| 国产精品综合一区二区三区| 色视频成人在线观看免| 在线不卡中文字幕| 中文幕一区二区三区久久蜜桃| 亚洲一本大道在线| 国产精品一区二区久激情瑜伽| 成人美女在线视频| 4438x亚洲最大成人网| 国产三级欧美三级日产三级99| 一个色在线综合| 国产福利不卡视频| 欧美亚洲国产一区在线观看网站 | 成人高清在线视频| 4438x成人网最大色成网站| 国产精品视频yy9299一区| 七七婷婷婷婷精品国产| 91性感美女视频| 精品av综合导航| 亚洲午夜精品在线| 高清在线成人网| 日韩视频一区二区| 亚洲伊人伊色伊影伊综合网| 国产乱码精品一区二区三| 欧美日韩国产一区| 亚洲日穴在线视频| 国产精品自在欧美一区| 337p亚洲精品色噜噜狠狠| 亚洲欧美电影一区二区| 国产精品99久久久久久久女警| 欧美日韩免费视频| 亚洲欧美偷拍另类a∨色屁股| 黑人巨大精品欧美一区| 3atv一区二区三区| 亚洲午夜国产一区99re久久| 不卡一区在线观看| 久久久久成人黄色影片| 久久99久国产精品黄毛片色诱| 欧美视频在线观看一区二区| 欧美精品tushy高清| 国产成人亚洲精品青草天美| 久久精品一区二区三区不卡牛牛| 蜜臀久久99精品久久久久宅男| 5566中文字幕一区二区电影 | 亚洲伦理在线精品|