99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

CSC420編程代寫、c/c++,Java程序代做

時間:2024-01-23  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Intro to Image Understanding (CSC420)
Assignment 1
Due Date: Jan 26th, 2024, 11:59:00 pm
Total: 120 marks
General Instructions:
• You are allowed to work directly with one other person to discuss the questions. However, you are still expected to write the solutions/code/report in your own words; i.e.
no copying. If you choose to work with someone else, you must indicate this in your
assignment submission. For example, on the first line of your report file (after your
own name and information, and before starting your answer to Q1), you should have
a sentence that says: “In solving the questions in this assignment, I worked together
with my classmate [name & student number]. I confirm that I have written the solutions/code/report in my own words”.
• Your submission should be in the form of an electronic report (PDF), with the answers
to the specific questions (each question separately), and a presentation and discussion
of your results. For this, please submit a file named report.pdf to MarkUs directly.
• Submit documented codes that you have written to generate your results separately.
Please store all of those files in a folder called assignment1, zip the folder and then
submit the file assignment1.zip to MarkUs. You should include a README.txt
file (inside the folder) which details how to run the submitted codes.
• Do not worry if you realize you made a mistake after submitting your zip file; you can
submit multiple times on MarkUs.
Part I: Theoretical Problems (60 marks)
[Question 1] Convolution (10 marks)
[1.a] (5 marks) Calculate and plot the convolution of x[n] and h[n] specified below:
x[n] = (
1 −3 ≤ n ≤ 3
0 otherwise
h[n] = (
1 −2 ≤ n ≤ 2
0 otherwise
(1)
[1.b] (5 marks) Calculate and plot the convolution of x[n] and h[n] specified below:
x[n] = (
1 −3 ≤ n ≤ 3
0 otherwise
h[n] = (
2 − |n| −2 ≤ n ≤ 2
0 otherwise
(2)
1
[Question 2] LTI Systems (15 marks)
We define a system as something that takes an input signal, e.g. x(n), and produces an
output signal, e.g. y(n). Linear Time-Invariant (LTI) systems are a class of systems that
are both linear and time-invariant. In linear systems, the output for a linear combination of
inputs is equal to the linear combination of individual responses to those inputs. In other
words, for a system T, signals x1(n) and x2(n), and scalars a1 and a2, system T is linear if
and only if:
T[a1x1(n) + a2x2(n)] = a1T[x1(n)] + a2T[x2(n)]
Also, a system is time-invariant if a shift in its input merely shifts the output; i.e. If T[x(n)] =
y(n), system T is time-invariant if and only if:
T[x(n − n0)] = y(n − n0)
[2.a] (5 marks) Consider a discrete linear time-invariant system T with discrete input signal
x(n) and impulse response h(n). Recall that the impulse response of a discrete system
is defined as the output of the system when the input is an impulse function δ(n), i.e.
T[δ(n)] = h(n), where:
δ(n) = (
1, if n = 0,
0, else.
Prove that T[x(n)] = h(n) ∗ x(n), where ∗ denotes convolution operation.
Hint: represent signal x(n) as a function of δ(n).
[2.b] (5 marks) Is Gaussian blurring linear? Is it time-invariant? Make sure to include your
justifications.
[2.c] (5 marks) Is time reversal, i.e. T[x(n)] = x(−n), linear? Is it time-invariant? Make
sure to include your justifications.
[Question 3] Polynomial Multiplication and Convolution (15 marks)
Vectors can be used to represent polynomials. For example, 3rd-degree polynomial (a3x
3 +
a2x
2 + a1x + a0) can by represented by vector [a3, a2, a1, a0].
If u and v are vectors of polynomial coefficients, prove that convolving them is equivalent to
multiplying the two polynomials they each represent.
Hint: You need to assume proper zero-padding to support the full-size convolution.
2
[Question 4] Laplacian Operator (20 marks)
The Laplace operator is a second-order differential operator in the “n”-dimensional Euclidean
space, defined as the divergence (∇) of the gradient (∇f). Thus if f is a twice-differentiable
real-valued function, then the Laplacian of f is defined by:
where the latter notations derive from formally writing:
Now, consider a 2D image I(x, y) and its Laplacian, given by ∆I = Ixx+Iyy. Here the second
partial derivatives are taken with respect to the directions of the variables x, y associated
with the image grid for convenience. Show that the Laplacian is in fact rotation invariant.
In other words, show that ∆I = Irr + Ir, where r and r
′ are any two orthogonal directions.
Hint: Start by using polar coordinates to describe a chosen location (x, y). Then use the
chain rule.
Part II: Implementation Tasks (60 marks)
[Question 5] Canny Edge Detector Robustness (10 marks)
Using the sample code provided in Tutorial 2, examine the sensitivity of the Canny edge
detector to Gaussian noise. To do so, take an image of your choice, and add i.i.d Gaussian
noise to each pixel. Analyze the performance of the edge detector as a function of noise variance. Include your observations and three sample outputs (corresponding to low, medium,
and high noise variances) in the report.
[Question 6] Edge Detection (50 marks)
In this question, the goal is to implement a rudimentary edge detection process that uses a
derivative of Gaussian, through a series of steps. For each step (excluding step 1) you are
supposed to test your implementation on the provided image, and also on one image of your
own choice. Include the results in your report.
Step I - Gaussian Blurring (10 marks): Implement a function that returns a 2D Gaussian matrix for input size and scale σ. Please note that you should not use any of the
existing libraries to create the filter, e.g. cv2.getGaussianKernel(). Moreover, visualize this
2D Gaussian matrix for two choices of σ with appropriate filter sizes. For the visualization,
3
you may consider a 2D image with a colormap, or a 3D graph. Make sure to include the
color bar or axis values.
Step II - Gradient Magnitude (10 marks): In the lectures, we discussed how partial
derivatives of an image are computed. We know that the edges in an image are from the
sudden changes of intensity and one way to capture that sudden change is to calculate the
gradient magnitude at each pixel. The edge strength or gradient magnitude is defined as:

where gx and gy are the gradients of image f(x, y) along x and y-axis direction respectively.
Using the Sobel operator, gx and gy can be computed as:
Implement a function that receives an image f(x, y) as input and returns its gradient g(x, y)
magnitude as output using the Sobel operator. You are supposed to implement the convolution required for this task from scratch, without using any existing libraries.
Step III - Threshold Algorithm (20 marks): After finding the image gradient, the
next step is to automatically find a threshold value so that edges can be determined. One
algorithm to automatically determine image-dependent threshold is as follows:
1. Let the initial threshold τ0 be equal to the average intensity of gradient image g(x, y),
as defined below:
where h and w are the height and width of the image under consideration.
2. Set iteration index i = 0, and categorize the pixels into two classes, where the lower
class consists of the pixels whose gradient magnitudes are less than τ0, and the upper
class contains the rest of the pixels.
3. Compute the average gradient magnitudes mL and mH of lower and upper classes,
respectively.
4. Set iteration i = i + 1 and update threshold value as:
τi =
mL + mH
2
5. Repeat steps 2 to 4 until |τi − τi−1| ≤ ϵ is satisfied, where ϵ → 0; take τi as final
threshold and denote it by τ .
4
Once the final threshold is obtained, each pixel of gradient image g(x, y) is compared
with τ . The pixels with a gradient higher than τ are considered as edge point and
is represented as white pixel; otherwise, it is designated as black. The edge-mapped
image E(x, y), thus obtained is:
E(x, y) = (
255, if g(x, y) ≥ τ
0, otherwise
Implement the aforementioned threshold algorithm. The input to this algorithm is the gradient image g(x, y) obtained from step II, and the output is a black and white edge-mapped
image E(x, y).
Step IV - Test (10 marks): Use the image provided along with this assignment, and also
one image of your choice to test all the previous steps (I to III) and to visualize your results
in the report. Convert the images to grayscale first. Please note that the input to each step
is the output of the previous step. In a brief paragraph, discuss how the algorithm works for
these two examples and highlight its strengths and/or its weaknesses.
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:莆田純原鞋的3個常見進貨渠道-在哪買?多少錢STM潮鞋服終端供應鏈
  • 下一篇:代寫IRP 1 Coursework 01編程、代做Python程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                麻豆中文一区二区| 日av在线不卡| 青青草国产成人99久久| 在线这里只有精品| 天天做天天摸天天爽国产一区| 色狠狠av一区二区三区| 日韩高清不卡一区| 2023国产精华国产精品| 99视频热这里只有精品免费| 亚洲一区二区三区四区五区黄 | 99久久99久久综合| 亚洲成人免费视| 久久女同精品一区二区| 日本久久电影网| 黄页网站大全一区二区| 亚洲欧洲www| 日韩女优av电影| 日本久久精品电影| 国内一区二区视频| 亚洲成人动漫在线免费观看| 久久久久97国产精华液好用吗| 91色porny在线视频| 狠狠色丁香婷综合久久| 亚洲福利视频一区| 国产精品国产三级国产a| 日韩一区二区不卡| 欧美偷拍一区二区| 成人99免费视频| 国产一区二区免费看| 一区2区3区在线看| 国产精品美女一区二区在线观看| 欧美一区二区久久久| 色94色欧美sute亚洲线路一久| 国产精品1区二区.| 麻豆精品国产传媒mv男同| 亚洲欧洲精品成人久久奇米网| 欧美tickling挠脚心丨vk| 欧美日韩中文国产| 色偷偷成人一区二区三区91| 高清beeg欧美| 国产一区不卡精品| 久久99深爱久久99精品| 日韩电影在线免费观看| 亚洲国产精品久久久久秋霞影院| 中文字幕一区二区三区四区不卡| 国产三级久久久| 日本一区二区三区四区| 免费精品视频最新在线| 中文字幕一区av| 国产精品欧美精品| 中文字幕电影一区| 国产精品久久一级| 一区精品在线播放| 国产精品传媒入口麻豆| 日韩久久一区二区| 亚洲综合区在线| 亚洲444eee在线观看| 日韩中文字幕1| 久久精品国产亚洲5555| 精品午夜久久福利影院| 国产盗摄视频一区二区三区| 国产黄色成人av| 99久久免费国产| 欧美日韩中文一区| 日韩欧美视频一区| 久久精品欧美日韩精品| 国产精品久久久久桃色tv| 综合网在线视频| 图片区日韩欧美亚洲| 九九久久精品视频| av中文字幕亚洲| 欧美视频完全免费看| 日韩欧美一级特黄在线播放| 久久久99久久精品欧美| 自拍偷拍亚洲激情| 丝袜美腿亚洲色图| 国产麻豆精品theporn| 91视频91自| 精品蜜桃在线看| 亚洲欧洲av在线| 日韩国产成人精品| 国产成人午夜99999| 色婷婷国产精品| 2024国产精品视频| 亚洲愉拍自拍另类高清精品| 久久国产精品第一页| 成人毛片老司机大片| 欧美少妇xxx| 国产精品视频第一区| 日韩激情一二三区| 色综合久久中文字幕| 欧美xfplay| 亚洲国产aⅴ成人精品无吗| 国产一区二区三区不卡在线观看 | 国产精品影视在线| 欧美图片一区二区三区| 国产欧美视频一区二区| 天天综合色天天| 91片黄在线观看| 久久网站最新地址| 亚洲丰满少妇videoshd| av一区二区三区四区| 欧美成人精精品一区二区频| 亚洲一区视频在线| 99精品视频中文字幕| 国产亚洲美州欧州综合国| 日韩精品久久久久久| 91成人免费网站| 亚洲美女视频在线观看| 不卡的电影网站| 国产精品久久夜| 风间由美一区二区三区在线观看 | 国产精品日韩成人| 国产乱码精品一区二区三区五月婷| 91精品久久久久久久久99蜜臂| 国产精品高潮呻吟| 丁香网亚洲国际| 丁香六月综合激情| 精品久久久久久久久久久院品网 | 午夜精品久久久久久久蜜桃app| 风间由美中文字幕在线看视频国产欧美| 欧美裸体一区二区三区| 亚洲国产精品人人做人人爽| 91免费小视频| 一区二区三区小说| 欧美日韩一二区| 香蕉影视欧美成人| 日韩一级免费一区| 激情六月婷婷久久| 国产欧美日韩在线| 成人av第一页| 亚洲欧美日韩国产成人精品影院 | 一区二区三区中文在线| 色吧成人激情小说| 首页亚洲欧美制服丝腿| 欧美一区二区观看视频| 久久99精品久久久久婷婷| 26uuu精品一区二区三区四区在线| 精品一区二区影视| 国产亚洲欧美中文| 99久久国产综合精品色伊| 亚洲综合精品久久| 91麻豆精品国产自产在线观看一区| 亚洲成a天堂v人片| 欧美精品一区二区三区久久久| 精品一区二区精品| 成人免费小视频| 欧美电影一区二区| 国产精品亚洲专一区二区三区 | 欧美韩国日本一区| 欧美亚日韩国产aⅴ精品中极品| 天堂av在线一区| 久久网这里都是精品| 91丨九色丨蝌蚪富婆spa| 午夜精品成人在线视频| 国产午夜亚洲精品午夜鲁丝片| 91日韩在线专区| 精品一区二区免费| 亚洲一区二区综合| 久久日一线二线三线suv| 91香蕉视频污在线| 麻豆国产欧美日韩综合精品二区| 欧美高清在线精品一区| 欧美精选午夜久久久乱码6080| 国产乱码精品一区二区三区av| 亚洲色图.com| 亚洲精品一区二区三区四区高清| 91免费在线视频观看| 国产乱码精品一品二品| 视频一区中文字幕国产| 国产精品久久久久久久久久免费看| 欧美日韩精品一区二区天天拍小说 | 奇米888四色在线精品| 国产精品国产三级国产专播品爱网| 欧美日韩不卡一区二区| 91麻豆精品视频| 成人爱爱电影网址| 美女在线观看视频一区二区| 亚洲乱码国产乱码精品精98午夜| 精品国产百合女同互慰| 欧美一区二区三区影视| 欧美性猛交xxxx乱大交退制版| 不卡av免费在线观看| 国产成人丝袜美腿| 国产一区二区三区免费播放| 日韩经典中文字幕一区| 亚洲一区免费观看| 亚洲乱码日产精品bd| 最新热久久免费视频| 国产精品国产三级国产aⅴ入口| www久久精品| 久久嫩草精品久久久精品| 精品国产91乱码一区二区三区 | 久久精品人人做人人爽人人| 日韩欧美在线影院| 日韩一区二区视频| 欧美大白屁股肥臀xxxxxx| 欧美一区二区女人| 欧美xxxx在线观看| 久久夜色精品一区|