合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        Root finding part代做、代寫c++,Python編程語言

        時間:2024-02-03  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        Lab Report #1 - Root finding part 1
        Math 9
        Due 2/5 (see Canvas for details)
        Instructions: Submit your report as a Matlab live script (i.e. a .mlx
        file). Plots should be produced and displayed within the .mlx file. Note:
        there are no regrades for this assignment. The assignment is out of 10
        points.
        Introduction: One of the key uses of root-finding is to solve equations
        that we can’t solve analytically (i.e. by doing algebra, etc.). Note that any
        equation with one unknown can be transformed into a root-finding problem
        by subtracting the right-hand side from the left-hand side to get something
        like
        LHS − RHS = 0
        Here we will look at a well-known example of an equation that can’t be
        solved analytically which arises in quantum mechanics: the finite square well
        (if you’re curious, click here (Wikipedia). Don’t worry - no knowledge of
        quantum mechanics is required or expected! If you’re interested, here is a
        simple summary of the physical meaning behind the problem we’ll study.
        A particle inside a well is like a ball bouncing around inside a box
        with an open top. The ball’s bounces could be small or large, but
        if it bounces too high it will escape from the box. We will let v
        represent the energy of the particle (like the height of the bounces)
        and u0 the energy required to escape the well (like the depth of the
        box). As long as v < u0, the particle will be trapped in the well.
        The key point of quantum physics is that unlike the bouncing
        ball, there will be only a finite number of possible ”energy levels”
        - amounts of energy the particle can have. Here, we’ll use our
        Matlab knowledge to study this and make a nice diagram of the
        energy levels.
        1
        Tasks
        1. (3 points) Energy levels can be divided into even and odd (referring to
        whether they’re associated with a state having even or odd symmetry).
        For a given u0 describing the depth of the well, even energy levels are
        given by the values of v ∈ (0, u0) that are roots of the equation
        f(v) = cos v
        q
        u
        2
        0 − v
        2 − v sin v = 0 (1)
        Using u0 = 20, produce the plot of f(v) shown below (on the next page)
        via the following steps:
        (a) Create an array 100 evenly-spaced values of v from 0 to u0.
        (b) Compute an array of the values of f(v) for each value in your v
        array by implementing Equation 1 (above) in Matlab. Remember
        to use element-wise operators (with the dot)!
        (c) To make the line easier to see, we will increase the width. Fill
        in the blanks: plot( , , ’LineWidth’, 2) to plot v on the
        horizontal axis and f(v) on the vertical axis.
        (d) Immediately after your plot command, set the axis labels and title
        as shown, using the commands xlabel, ylabel, and title. Note:
        u0 can by typed like "u 0".
        (e) Use the command fontsize( , "points") to set the font size
        large enough to be read. (Try something around 14).
        2. (1 points) Repeat the above process to produce a similar plot for u0 =
        100. You should expect to see that it looks very jagged.
        3. (1 point) Think about what part of our code we could change in order
        to make the line smoother. By making an appropriate change, create
        a new plot for u0 = 100 that looks smooth like the example from Task
        1.
        4. (1 point) Using your bisect function, compute and display the only root
        of f(v) for u0 = 1, with an error under 10−6
        . Hint: You need to figure
        out what to use as your initial xl and xr. Try making a plot and looking
        at it to choose a starting interval that contains the root!
        2
        Figure 1: For Task 1.
        5. (4 points) Following the following steps, produce an array (you can call
        it root array) containing all roots for u0 = 20.
        (a) Create an array 100 evenly-spaced values of v from 0 to u0.
        (b) Compute an array of the values of f(v) for each value in your v
        array (just like above).
        (c) Next, we want to find pairs of successive v values in our v array such that the sign of f(v) changes between them, to serve
        as our xl and xr in the bisection method. Create xl array and
        xr array such that the i-th root lies between xl array(i) and
        xr array(i). At the bottom of this file there’s a snippet that
        shows you how to do this - you can copy it for no loss of points.
        However, If you want to practice thinking like a Matlab programmer, try coming up with a way to do this via logical indexing
        yourself. You should find 7 of them!
        (d) Pre-allocate a 7-element vector called root array filled with zeros.
        (e) Using a for loop, loop over a variable i from 1 to 7, and at each
        step call the bisect function using your left and right endpoints
        from xl array and xr array. To input the function (first input
        3
        to bisect), use an anonymous function. Recall the syntax: If we
        wanted to express just f(v) = p
        u
        2
        0 − v
        2
        , it would be
        @(v) sqrt(u_0.^2 - v.^2)
        so you just have to change the part after the @(v) to the correct
        f(v) from above.
        (f) Display the resulting value of root array. You should get values
        of approximately:
        1.4959 4.4862 7.**11 10.4460 13.4028
        16.**40 19.1433
        4
        Help for 5c: Assuming your v and f arrays are called v array and f array,
        try using the following code:
        inds = find(sign(f_array(1:(end-1))) ~= sign(f_array(2:end)));
        xl_array = v_array(inds);
        xr_array = v_array(inds+1);
        如有需要,請加QQ:99515681 或WX:codehelp

        掃一掃在手機打開當前頁
      1. 上一篇:代寫指標 代寫期貨策略 指標代寫
      2. 下一篇:代發EI會議 2024 IEEE第三屆電氣工程、大數據和算法國際會議(EEBDA 2024)
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網
        菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
      4. 上海廠房出租 短信驗證碼 酒店vi設計

        主站蜘蛛池模板: 国产日韩AV免费无码一区二区 | 亚洲综合无码一区二区三区| 中文字幕av无码一区二区三区电影| 性色AV一区二区三区| 国产成人av一区二区三区在线| 久久国产精品一区免费下载| 国产精品视频一区二区猎奇| 日韩亚洲一区二区三区| 波多野结衣中文字幕一区| 在线观看国产一区二三区| 一区二区乱子伦在线播放| 国产一区二区三区四| 精品国产鲁一鲁一区二区| 天堂Aⅴ无码一区二区三区| 国产一区二区三区免费看| 中文字幕一区二区三区人妻少妇| 亚洲国产综合无码一区| 亚洲一区二区三区国产精品| 日韩一区二区三区不卡视频| 无码人妻一区二区三区av| 亚洲一区二区三区免费观看 | 又硬又粗又大一区二区三区视频 | 久久久91精品国产一区二区| 成人免费av一区二区三区| 麻豆一区二区三区蜜桃免费| 精品国产亚洲第一区二区三区| 国产精品亚洲一区二区在线观看| 99久久精品国产一区二区成人| 日本成人一区二区三区| 日产一区日产2区| 国产美女精品一区二区三区| 红杏亚洲影院一区二区三区 | aⅴ一区二区三区无卡无码| 在线视频亚洲一区| 国产精品综合一区二区| 国产精品亚洲一区二区无码| 国产福利一区二区精品秒拍| 国产一区二区影院| 一区二区在线视频免费观看| 红杏亚洲影院一区二区三区| 国产高清不卡一区二区|