99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS444 Linear classifiers

時間:2024-02-29  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


Assignment 1: Linear classifiers

Due date: Thursday, February 15, 11:59:59 PM

 

In this assignment you will implement simple linear classifiers and run them on two different datasets:

1. Rice dataset: a simple categorical binary classification dataset. Please note that the

labels in the dataset are 0/1, as opposed to -1/1 as in the lectures, so you may have to change either the labels or the derivations of parameter update rules accordingly.

2. Fashion-MNIST: a multi-class image classification dataset

The goal of this assignment is to help you understand the fundamentals of a few classic methods and become familiar with scientific computing tools in Python. You will also get experience in hyperparameter tuning and using proper train/validation/test data splits.

Download the starting code here.

You will implement the following classifiers (in their respective files):

1. Logistic regression (logistic.py)

2. Perceptron (perceptr on.py)

3. SVM (svm.py)

4. Softmax (softmax.py)

For the logistic regression classifier, multi-class prediction is difficult, as it requires a one-vs-one or one-vs-rest classifier for every class. Therefore, you only need to use logistic regression on the Rice dataset.

The top-level notebook (CS 444 Assignment-1.ipynb) will guide you through all of the steps.

Setup instructions are below. The format of this assignment is inspired by the Stanford

CS231n assignments, and we have borrowed some of their data loading and instructions in our assignment IPython notebook.

None of the parts of this assignment require the use of a machine with a GPU. You may complete the assignment using your local machine or you may use Google Colaboratory.

Environment Setup (Local)

If you will be completing the assignment on a local machine then you will need a Python environment set up with the appropriate packages.

We suggest that you use Anaconda to manage Python package dependencies

(https://www.anaconda.com/download). This guide provides useful information on how to use Conda: https://conda.io/docs/user-guide/getting-started.html.

Data Setup (Local)

Once you have downloaded and opened the zip file, navigate to the fashion-mnist directory in assignment1 and execute the get_datasets script provided:

$ cd assignment1/fashion-mnist/

$ sh get_data.sh or $bash get_data.sh

The Rice dataset is small enough that we've included it in the zip file.

Data Setup (For Colaboratory)

If you are using Google Colaboratory for this assignment, all of the Python packages you need will already be installed. The only thing you need to do is download the datasets and make them available to your account.

Download the assignment zip file and follow the steps above to download Fashion-MNIST to your local machine. Next, you should make a folder in your Google Drive to holdall of   your assignment files and upload the entire assignment folder (including the datasets you downloaded) into this Google drive file.

You will now need to open the assignment 1 IPython notebook file from your Google Drive folder in Colaboratory and run a few setup commands. You can find a detailed tutorial on   these steps here (no need to worry about setting up GPU for now). However, we have

condensed all the important commands you need to run into an IPython notebook.

IPython

The assignment is given to you in the CS 444 Assignment-1.ipynb file. As mentioned, if you are   using Colaboratory, you can open the IPython notebook directly in Colaboratory. If you are using a local machine, ensure that IPython is installed (https://ipython.org/install.html). You may then navigate to the assignment directory in the terminal and start a local IPython server using the jupyter notebook command.

Submission Instructions

Submission of this assignment will involve three steps:

1. If you are working in a pair, only one designated student should make the submission to Canvas and Kaggle. You should indicate your Team Name on Kaggle Leaderboard   and team members in the report.

2. You must submit your output Kaggle CSV files from each model on the Fashion- MNIST dataset to their corresponding Kaggle competition webpages:

  Perceptron

  SVM

  Softmax

The baseline accuracies you should approximately reach are listed as benchmarks on each respective Kaggle leaderboard.

3. You must upload three files on Canvas:

1. All of your code (Python files and ipynb file) in a single ZIP file. The filename should benetid_mp1_code.zip. Do NOT include datasets in your zip file.

2. Your IPython notebook with output cells converted to PDF format. The filename should benetid_mp1_output.pdf.

3. A brief report in PDF format using this template. The filename should be netid_mp1_report.pdf.

Don'tforget to hit "Submit" after uploadingyour files,otherwise we will not receive your submission!

Please refer to course policies on academic honesty, collaboration, late submission, etc.
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:莆田鞋在哪買:介紹十個最新購買渠道
  • 下一篇:代寫5614. C++ PROGRAMMING
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                欧美老肥妇做.爰bbww视频| 欧美三级乱人伦电影| 成人免费毛片app| 国产精品天干天干在线综合| 成人免费看视频| 亚洲欧美日韩国产一区二区三区| 91丨porny丨国产| 亚洲免费伊人电影| 欧美日韩精品欧美日韩精品| 日韩av一区二区三区四区| 日韩精品中文字幕一区| 久久99国产精品久久| 国产亚洲女人久久久久毛片| 92精品国产成人观看免费| 亚洲电影第三页| 日韩欧美中文字幕公布| 99精品一区二区| 男女男精品网站| 亚洲欧美国产高清| 26uuu亚洲婷婷狠狠天堂| 色婷婷综合在线| 国产一区二区视频在线播放| 亚洲精品v日韩精品| 26uuu精品一区二区| 91蜜桃网址入口| 国产激情精品久久久第一区二区 | av在线一区二区三区| 三级在线观看一区二区| 国产精品久久久久毛片软件| 精品国产3级a| 日韩精品在线一区二区| 日本韩国欧美在线| 成人h精品动漫一区二区三区| 麻豆精品新av中文字幕| 国产精品日韩成人| 欧美三级在线播放| 一本久道久久综合中文字幕| 成人免费不卡视频| 国产一本一道久久香蕉| 男男成人高潮片免费网站| 午夜视频在线观看一区二区| 综合久久国产九一剧情麻豆| 国产日韩精品一区二区浪潮av| 91精品国产综合久久精品麻豆| 欧美色手机在线观看| 97se狠狠狠综合亚洲狠狠| 成人国产免费视频| 丁香激情综合五月| 国产精品1区2区| 国产乱人伦偷精品视频不卡| 韩国一区二区在线观看| 麻豆精品久久久| 久久精品国产久精国产爱| 欧美aaaaaa午夜精品| 日韩国产欧美在线观看| 偷拍自拍另类欧美| 蜜臀va亚洲va欧美va天堂 | 亚洲国产一区在线观看| 中文字幕一区二区三区四区不卡| 亚洲国产成人午夜在线一区| 欧美极品aⅴ影院| 亚洲视频免费看| 亚洲精选免费视频| 日本不卡1234视频| 国产在线精品一区二区夜色 | 蜜桃91丨九色丨蝌蚪91桃色| 久久精品免费看| 福利电影一区二区| 91视视频在线直接观看在线看网页在线看| av电影一区二区| 这里是久久伊人| 久久蜜桃av一区精品变态类天堂 | 一区二区三区高清不卡| 亚洲bt欧美bt精品| 日本不卡视频在线观看| 韩国女主播一区二区三区| 91在线观看成人| 日韩美女主播在线视频一区二区三区| 久久久精品黄色| 亚洲愉拍自拍另类高清精品| 美女久久久精品| eeuss鲁一区二区三区| 91精品国模一区二区三区| 中文字幕av资源一区| 偷偷要91色婷婷| 成人午夜精品一区二区三区| 欧美中文字幕一区| 日本一区二区三区久久久久久久久不| 亚洲日本在线a| 国产中文字幕精品| 欧美日本视频在线| 国产精品毛片久久久久久久| 天天做天天摸天天爽国产一区| 成人午夜激情在线| 亚洲精品一区二区三区影院 | 久草中文综合在线| 欧美三级在线看| 国产精品天美传媒| 久久精品av麻豆的观看方式| 91福利在线观看| 欧美激情在线一区二区三区| 石原莉奈在线亚洲三区| 91视频观看视频| 国产日产欧美一区二区三区| 日韩不卡在线观看日韩不卡视频| 97久久超碰精品国产| 欧美精品一区二区三区在线播放| 日韩毛片视频在线看| 成人自拍视频在线| 日韩色在线观看| 91福利小视频| 亚洲精选一二三| www.成人网.com| 国产精品色婷婷| 国产精品一色哟哟哟| 精品久久久三级丝袜| 蜜桃av一区二区| 欧美一区二区三区成人| 亚洲18色成人| 69成人精品免费视频| 天天色综合天天| 91精品视频网| 日本免费新一区视频| 日韩亚洲国产中文字幕欧美| 日本欧美一区二区在线观看| 欧美肥妇毛茸茸| 蜜桃精品视频在线| 亚洲精品一区二区在线观看| 国产一区欧美二区| 国产视频一区不卡| 成人午夜私人影院| 国产精品电影院| 欧美自拍偷拍一区| 免费在线看一区| 精品国产凹凸成av人导航| 国产精品一区二区视频| 国产精品亲子乱子伦xxxx裸| 不卡高清视频专区| 亚洲精品欧美在线| 欧美日韩久久久| 日本欧美韩国一区三区| 精品美女在线播放| 国产成人精品免费一区二区| 自拍偷拍亚洲欧美日韩| 欧美日韩在线播放一区| 日韩av在线播放中文字幕| 久久综合精品国产一区二区三区| 国产**成人网毛片九色| 亚洲激情一二三区| 日韩一区二区三区四区五区六区| 韩国一区二区视频| 国产精品不卡在线| 日韩一区二区三免费高清| 国产成人免费在线观看不卡| 亚洲人成网站精品片在线观看| 欧美系列亚洲系列| 精品一区二区三区免费视频| 欧美国产成人精品| 欧美日韩国产区一| 成人小视频免费在线观看| 日韩中文字幕区一区有砖一区| 久久久精品免费观看| 欧美日韩亚洲综合| 国产99精品视频| 亚洲国产精品麻豆| 欧美激情综合五月色丁香小说| 欧美日韩国产在线观看| 成人性视频网站| 精品在线你懂的| 五月婷婷另类国产| 国产精品传媒视频| 2019国产精品| 91精品国产综合久久久久| 91天堂素人约啪| 国产成人在线网站| 麻豆久久久久久久| 亚洲mv在线观看| 一区二区三区精品在线| 国产精品国产三级国产普通话99| 精品久久久久香蕉网| 欧美日韩精品一区二区天天拍小说 | 成人综合婷婷国产精品久久蜜臀| 亚洲国产你懂的| 最好看的中文字幕久久| 国产视频一区不卡| 久久综合av免费| xnxx国产精品| 精品国产乱子伦一区| 欧美一区二区三区免费观看视频 | 精品亚洲国内自在自线福利| 亚洲v中文字幕| 亚洲综合在线免费观看| 亚洲欧洲韩国日本视频| 国产精品超碰97尤物18| 国产精品网站在线播放| 久久五月婷婷丁香社区| 欧美成人a在线| 欧美精品一区二区在线播放| 欧美精品一区二区三区很污很色的| 69堂精品视频|