99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫5614. C++ PROGRAMMING

時間:2024-02-29  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


Assignment 1: Linear classifiers

Due date: Thursday, February 15, 11:59:59 PM

 

In this assignment you will implement simple linear classifiers and run them on two different datasets:

1. Rice dataset: a simple categorical binary classification dataset. Please note that the

labels in the dataset are 0/1, as opposed to -1/1 as in the lectures, so you may have to change either the labels or the derivations of parameter update rules accordingly.

2. Fashion-MNIST: a multi-class image classification dataset

The goal of this assignment is to help you understand the fundamentals of a few classic methods and become familiar with scientific computing tools in Python. You will also get experience in hyperparameter tuning and using proper train/validation/test data splits.

Download the starting code here.

You will implement the following classifiers (in their respective files):

1. Logistic regression (logistic.py)

2. Perceptron (perceptr on.py)

3. SVM (svm.py)

4. Softmax (softmax.py)

For the logistic regression classifier, multi-class prediction is difficult, as it requires a one-vs-one or one-vs-rest classifier for every class. Therefore, you only need to use logistic regression on the Rice dataset.

The top-level notebook (CS 444 Assignment-1.ipynb) will guide you through all of the steps.

Setup instructions are below. The format of this assignment is inspired by the Stanford

CS231n assignments, and we have borrowed some of their data loading and instructions in our assignment IPython notebook.

None of the parts of this assignment require the use of a machine with a GPU. You may complete the assignment using your local machine or you may use Google Colaboratory.

Environment Setup (Local)

If you will be completing the assignment on a local machine then you will need a Python environment set up with the appropriate packages.

We suggest that you use Anaconda to manage Python package dependencies

(https://www.anaconda.com/download). This guide provides useful information on how to use Conda: https://conda.io/docs/user-guide/getting-started.html.

Data Setup (Local)

Once you have downloaded and opened the zip file, navigate to the fashion-mnist directory in assignment1 and execute the get_datasets script provided:

$ cd assignment1/fashion-mnist/

$ sh get_data.sh or $bash get_data.sh

The Rice dataset is small enough that we've included it in the zip file.

Data Setup (For Colaboratory)

If you are using Google Colaboratory for this assignment, all of the Python packages you need will already be installed. The only thing you need to do is download the datasets and make them available to your account.

Download the assignment zip file and follow the steps above to download Fashion-MNIST to your local machine. Next, you should make a folder in your Google Drive to holdall of   your assignment files and upload the entire assignment folder (including the datasets you downloaded) into this Google drive file.

You will now need to open the assignment 1 IPython notebook file from your Google Drive folder in Colaboratory and run a few setup commands. You can find a detailed tutorial on   these steps here (no need to worry about setting up GPU for now). However, we have

condensed all the important commands you need to run into an IPython notebook.

IPython

The assignment is given to you in the CS 444 Assignment-1.ipynb file. As mentioned, if you are   using Colaboratory, you can open the IPython notebook directly in Colaboratory. If you are using a local machine, ensure that IPython is installed (https://ipython.org/install.html). You may then navigate to the assignment directory in the terminal and start a local IPython server using the jupyter notebook command.

Submission Instructions

Submission of this assignment will involve three steps:

1. If you are working in a pair, only one designated student should make the submission to Canvas and Kaggle. You should indicate your Team Name on Kaggle Leaderboard   and team members in the report.

2. You must submit your output Kaggle CSV files from each model on the Fashion- MNIST dataset to their corresponding Kaggle competition webpages:

  Perceptron

  SVM

  Softmax

The baseline accuracies you should approximately reach are listed as benchmarks on each respective Kaggle leaderboard.

3. You must upload three files on Canvas:

1. All of your code (Python files and ipynb file) in a single ZIP file. The filename should benetid_mp1_code.zip. Do NOT include datasets in your zip file.

2. Your IPython notebook with output cells converted to PDF format. The filename should benetid_mp1_output.pdf.

3. A brief report in PDF format using this template. The filename should be netid_mp1_report.pdf.

Don'tforget to hit "Submit" after uploadingyour files,otherwise we will not receive your submission!

Please refer to course policies on academic honesty, collaboration, late submission, etc.
代寫 5614. C++ Programming-留學生作業幫 (daixie7.com)


請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫CS444 Linear classifiers
  • 下一篇:莆田鞋官方正品入口,這十個官方入口必須收藏
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产日韩欧美精品电影三级在线| 777奇米四色成人影色区| 亚洲成人精品一区| 亚洲www啪成人一区二区麻豆| 捆绑变态av一区二区三区| 亚洲综合精品自拍| 国产不卡视频一区| 欧美精品一区二区三区很污很色的| 国产成人精品亚洲日本在线桃色| 成人av在线资源| 欧美色窝79yyyycom| 99re8在线精品视频免费播放| 国产精品欧美一级免费| 一区二区理论电影在线观看| 自拍av一区二区三区| 美女视频网站黄色亚洲| 精品福利一区二区三区| 久久精品国产免费看久久精品| 69堂成人精品免费视频| 国产综合一区二区| 成人欧美一区二区三区1314| 欧美高清dvd| 激情小说亚洲一区| 亚洲成人高清在线| 国产肉丝袜一区二区| 91精品免费在线| 色先锋aa成人| 精品中文字幕一区二区| 亚洲美女屁股眼交| 久久亚洲一区二区三区明星换脸| 成人免费观看视频| 久久99精品久久只有精品| 亚洲免费伊人电影| 国产午夜精品理论片a级大结局| 欧美美女一区二区三区| 波多野结衣在线一区| 国产日本欧美一区二区| 亚洲精品一区二区三区香蕉| 成人深夜视频在线观看| 国产乱码一区二区三区| 久久成人久久鬼色| 久久精品噜噜噜成人av农村| 亚洲图片欧美综合| 蜜桃视频在线观看一区| 亚洲电影在线播放| 日日摸夜夜添夜夜添国产精品 | 亚洲美女在线国产| 亚洲欧洲一区二区在线播放| 亚洲欧洲国产专区| 天天综合色天天综合色h| 蜜桃av一区二区三区电影| 国产伦精品一区二区三区在线观看 | 一区二区日韩电影| 亚洲三级在线播放| 午夜精品久久久久影视| 蜜桃视频在线一区| 丁香六月综合激情| 欧美精品v日韩精品v韩国精品v| 欧美综合在线视频| 久久亚洲综合色| 亚洲国产乱码最新视频| 精品一区免费av| 欧美亚洲一区二区在线观看| 精品电影一区二区| 全国精品久久少妇| 在线影视一区二区三区| 日韩毛片一二三区| www.亚洲色图| 国产视频一区二区在线观看| 日韩精品三区四区| 欧美老女人第四色| 日本在线播放一区二区三区| 91国产丝袜在线播放| 亚洲视频1区2区| 成人国产精品免费观看视频| 亚洲精品在线网站| 国产精品99久久久久久有的能看 | 亚洲美女免费在线| 在线观看www91| 亚洲小说春色综合另类电影| 91黄色免费观看| 一区二区三区91| 欧美色倩网站大全免费| 亚洲va韩国va欧美va精品| 欧美日韩国产不卡| 一本一道久久a久久精品综合蜜臀 一本一道综合狠狠老 | 国产欧美一区二区三区在线老狼| 午夜精品成人在线视频| 色老汉一区二区三区| 欧美激情在线观看视频免费| 精品一区免费av| 日韩精品一区国产麻豆| 欧美视频在线观看一区| 成人一区二区三区中文字幕| 伊人婷婷欧美激情| 久久夜色精品一区| 欧美日韩一区二区三区免费看| 老司机免费视频一区二区| 日本一二三不卡| 精品国产乱码久久久久久久久| 三级精品在线观看| 国产最新精品精品你懂的| 国产一区二区在线视频| 成人免费av在线| 懂色av一区二区三区免费看| 国产高清精品网站| 成人av电影免费在线播放| 日韩精品色哟哟| 麻豆精品在线观看| 国产在线看一区| 色婷婷综合久色| 欧美午夜宅男影院| 91麻豆视频网站| 欧美精品色一区二区三区| 欧美一区二区精品| 久久久久久久精| 亚洲人成在线播放网站岛国| 国产亚洲一区二区三区四区| 中文av一区特黄| 综合中文字幕亚洲| 紧缚奴在线一区二区三区| 不卡av在线免费观看| 欧美性一二三区| 2017欧美狠狠色| 亚洲另类春色校园小说| 中文字幕在线免费不卡| 亚洲一卡二卡三卡四卡无卡久久| 视频在线观看一区| 国产69精品久久久久777| 欧美网站大全在线观看| 精品精品欲导航| 一区二区激情视频| 成人综合日日夜夜| 51精品视频一区二区三区| 中文一区二区在线观看| 日韩av一级片| 欧美色综合影院| 亚洲美女少妇撒尿| 成人动漫一区二区在线| 欧美mv日韩mv亚洲| 奇米888四色在线精品| 欧美日韩日日夜夜| 午夜精品福利一区二区三区av | 亚洲婷婷综合久久一本伊一区| 国产精品国产精品国产专区不片| 亚洲成人一二三| 91美女片黄在线观看91美女| 精品国产凹凸成av人导航| 日韩激情视频网站| 97久久超碰国产精品电影| 欧美国产一区视频在线观看| www.日韩av| 亚洲国产精品久久一线不卡| 色综合久久久久综合99| 一区二区高清在线| 欧美一区二区视频在线观看2022| 日本中文字幕不卡| 久久久亚洲高清| 懂色av一区二区三区免费看| 亚洲激情图片小说视频| 欧美精品日日鲁夜夜添| 久久国产精品99久久久久久老狼| 国产午夜亚洲精品理论片色戒| aaa亚洲精品| 日本视频一区二区| 亚洲欧美综合网| 欧美成人高清电影在线| 91视频在线看| 极品少妇一区二区| 亚洲一区在线观看免费观看电影高清| 欧美性猛交xxxxxxxx| 精品一区二区av| 午夜激情久久久| 国产麻豆精品视频| 亚洲精选视频在线| 久久亚洲春色中文字幕久久久| 91麻豆免费看| av一区二区三区| 国产成人午夜视频| 免费久久99精品国产| 亚洲午夜精品网| 五月天欧美精品| 亚洲一区在线观看网站| 国产精品理论在线观看| 亚洲精品一区在线观看| 欧美日韩1区2区| 日韩欧美中文字幕公布| 7777精品伊人久久久大香线蕉的| 色中色一区二区| 一本久道久久综合中文字幕| 国产成人av福利| 成人久久视频在线观看| 91美女福利视频| 91精品国产91久久综合桃花| 欧美日韩精品三区| 欧美精品电影在线播放| 日韩精品一区二区三区中文精品| 精品美女被调教视频大全网站| 久久奇米777| 亚洲一二三四区|