99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫INAF U8145、代做c++,Java程序語言

時間:2024-04-10  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



SIPA INAF U8145
Spring 2024
Problem Set 3: Poverty and Inequality in Guatemala
Due Fri. April 5, 11:59pm, uploaded in a single pdf file on Courseworks
In this exercise, you will conduct an assessment of poverty and inequality in Guatemala. The data come from the
Encuesta de Condiciones de Vita (ENCOVI) 2000, collected by the Instituto Nacional de Estadistica (INE), the
national statistical institute of Guatemala, with assistance from the World Bank’s Living Standards Measurement
Study (LSMS). Information on this and other LSMS surveys are on the World Bank’s website at
http://www.worldbank.org/lsms. These data were used in the World Bank’s official poverty assessment for
Guatemala in 2003, available here.
Two poverty lines have been calculated for Guatemala using these ENCOVI 2000 data. The first is an extreme
poverty line, defined as the annual cost of purchasing the minimum daily caloric requirement of 2, 172 calories.
By this definition, the extreme poverty line is 1,912 Quetzals (Q), or approximately I$649 (PPP conversion), per
person per year. The second is a full poverty line, defined as the extreme poverty line plus an allowance for nonfood items, where the allowance is calculated from the average non-food budget share of households whose
calorie consumption is approximately the minimum daily requirement. (In other words, the full poverty line is the
average per-capita expenditures of households whose food per-capita food consumption is approximately at the
minimum.) By this definition, the full poverty line is 4,319 Q, or I$1,467.
Note on sampling design: the ENCOVI sample was not a random sample of the entire population. First, clusters
(or “strata”) were defined, and then households were sampled within each cluster. Given the sampling design, the
analysis should technically be carried out with different weights for different observations. Stata has a special set
of commands to do this sort of weighting (svymean, svytest, svytab etc.) But for the purpose of this exercise, we
will ignore the fact that the sample was stratified, and assign equal weight for all observations.1 As a result, your
answers will not be the same as in the World Bank’s poverty assessment, and will in some cases be unreliable.
1. Get the data. From the course website, download the dataset ps3.dta, which contains a subset of the variables
available in the ENCOVI 2000. Variable descriptions are contained in ps3vardesc.txt.
2. Start a new do file. My suggestion is that you begin again from the starter Stata program for Problem Set 1 (or
from your own code for Problem Set 1), keep the first set of commands (the “housekeeping” section) changing
the name of the log file, delete the rest, and save the do file under a new name.
3. Open the dataset in Stata (“use ps3.dta”), run the “describe” command, and check that you have 7,230
observations on the variables in ps3vardesc.txt.
4. Calculate the income rank for each household in the dataset (egen incrank = rank(incomepc)). Graph the
poverty profile. Include horizontal lines corresponding to the full poverty line and the extreme poverty line.
(Hint: you may want to create new variables equal to the full and extreme poverty lines.) When drawing the
poverty profile, only include households up to the 95th percentile in income per capita on the graph. (That is,
leave the top 5% of households off the graph.) Eliminating the highest-income household in this way will allow
you to use a sensible scale for the graph, and you will be able to see better what is happening at lower income
levels.
5. Using the full poverty line and the consumption per capita variable, calculate the poverty measures P0, P1, P2.
(Note: to sum a variable over all observations, use the command “egen newvar = total(oldvar);”.)
6. Using the extreme poverty line and the consumption per capita variable, again calculate P0, P1, and P2.
1 In all parts, you should treat each household as one observation. That is, do not try to adjust for the fact that
some households are larger than others. You will thus be calculating poverty statistics for households, using
per-capita consumption within the household as an indicator of the well-being of the household as a whole.
7. Using the full poverty line and the consumption per capita variable, calculate P2 separately for urban and rural
households.
8. Using the full poverty line and the consumption per capita variable, calculate P2 separately for indigenous and
non-indigenous households.
9. Using the full poverty line and the consumption per capita variable, calculate P2 separately for each region.
(Three bonus points for doing this in a “while” loop in Stata, like the one you used in Problem Set 1.)
10. Using one of your comparisons from parts 7-9, compute the contribution that each subgroup makes to
overall poverty. Note that if P2 is the poverty measure for the entire population (of households or of individuals),
and P2 j and sj are the poverty measure and population share of sub-group j of the population, then the
contribution of each sub-group to overall poverty can be written: sj*P2j/P2.
11. Summarize your results for parts 4-10 in a paragraph, noting which calculations you find particularly
interesting or important and why.
12. In many cases, detailed consumption or income data is not available, or is available only for a subset of
households, and targeting of anti-poverty programs must rely on poverty indices based on a few easy-toobserve correlates of poverty. Suppose that in addition to the ENCOVI survey, Guatemala has a population
census with data on all households, but suppose also that the census contains no information on per capita
consumption and only contains information on the following variables: urban, indig, spanish, n0_6, n7_24,
n25_59, n60_plus, hhhfemal, hhhage, ed_1_5, ed_6, ed_7_10, ed_11, ed_m11, and dummies for each region.
(In Stata, a convenient command to create dummy variables for each region is “xi i.region;”.) Calculate a
“consumption index” using the ENCOVI by (a) regressing log per-capita consumption on the variables
available in the population census, and (b) recovering the predicted values (command: predict), (c) converting
from log to level using the “exp( )” function in Stata. These predicted values are your consumption index. Note
that an analogous consumption index could be calculated for all households in the population census, using the
coefficient estimates from this regression using the ENCOVI data. Explain how.
13. Calculate P2 using your index (using the full poverty line) and compare to the value of P2 you calculated in
question 5.
14. Using the per-capita income variable, calculate the Gini coefficient for households (assuming that each
household enters with equal weight.) Some notes: (1) Your bins will be 1/N wide, where N is the number of
households. (2) The value of the Gini coefficient you calculate will not be equal to the actual Gini coefficient for
Guatemala, because of the weighting issue described above. (3) To generate a cumulative sum of a variable in Stata,
use the syntax “gen newvar = sum(oldvar);”. Try it out. (4) If you are interested (although it is not strictly
necessary in this case) you can create a difference between the value of a variable in one observation and the value
of the same variable in a previous observation in Stata, use the command “gen xdiff = x - x[_n-1];”. Be careful
about how the data are sorted when you do this.
What to turn in: In your write-up, you should report for each part any calculations you made, as well as written
answers to any questions. Remember that you are welcome to work in groups but you must do your write-up on
your own, and note whom you worked with. You should also attach a print-out of your Stata code.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代做RISC-V、C/C++編程設計代寫
  • 下一篇:菲律賓買房的理由是什么 菲律賓買房的選擇
  • ·代寫ECON 8820、代做c++,Java程序語言
  • ·代寫MISM 6210、Python/java程序語言代做
  • ·CS101 編程代寫、代做 java程序語言
  • ·代寫DTS203TC、C++,Java程序語言代做
  • ·代做Biological Neural Computation、Python/Java程序語言代寫
  • ·program代做、Java程序語言代寫
  • ·CS 2210編程代寫、Java程序語言代做
  • ·代寫159.251編程、代做Java程序語言
  • 合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                色综合天天在线| 中文字幕乱码亚洲精品一区| 91黄色在线观看| 日韩三级中文字幕| 亚洲日本青草视频在线怡红院| 亚洲最大的成人av| 国产一区二区精品久久99| 91老司机福利 在线| 欧美一区二区三区影视| 1024精品合集| 国产美女娇喘av呻吟久久| 欧美综合亚洲图片综合区| 久久香蕉国产线看观看99| 亚洲一区二区三区视频在线| 粉嫩av一区二区三区在线播放| 欧美日韩高清在线| 亚洲精品乱码久久久久久黑人| 国产一区二区三区| 日韩一区二区电影| 亚洲www啪成人一区二区麻豆| av一二三不卡影片| 国产欧美日韩视频在线观看| 日韩av中文字幕一区二区三区| 色婷婷综合五月| 中文字幕一区二区不卡| 国产精品88av| 久久综合狠狠综合| 韩国欧美国产一区| 91精品国产黑色紧身裤美女| 亚洲乱码中文字幕综合| 成人性生交大片免费看中文| 久久久久久影视| 美国十次了思思久久精品导航| 欧美性大战久久久| 亚洲欧洲日韩在线| 9色porny自拍视频一区二区| 国产三级精品三级在线专区| 麻豆精品在线观看| 日韩视频一区在线观看| 日韩av网站免费在线| 欧美吻胸吃奶大尺度电影| 亚洲美女屁股眼交| 91免费小视频| 一二三四社区欧美黄| 欧美揉bbbbb揉bbbbb| 亚洲国产日韩a在线播放性色| 91福利社在线观看| 一二三四社区欧美黄| 91福利在线观看| 丝袜美腿亚洲色图| 日韩欧美国产一区二区在线播放| 麻豆成人免费电影| 国产无遮挡一区二区三区毛片日本| 国产精品一区久久久久| 国产亚洲欧美激情| 91蜜桃在线观看| 亚洲精品国产成人久久av盗摄| 日本高清不卡视频| 亚洲不卡在线观看| 久久综合五月天婷婷伊人| 激情成人综合网| 国产精品国产三级国产aⅴ中文| 高清日韩电视剧大全免费| 中文字幕一区二区三区不卡在线 | 视频在线观看一区二区三区| 欧美一级免费观看| 国产精品1区2区3区| 中文字幕中文字幕一区二区 | 一区二区在线观看视频| 欧美日韩亚洲综合一区| 麻豆精品精品国产自在97香蕉| 久久众筹精品私拍模特| 蜜桃视频在线一区| 国产精品美女久久久久久2018| 色综合网色综合| 久久99精品久久只有精品| 国产欧美在线观看一区| 欧美视频一区二区在线观看| 六月丁香综合在线视频| 中文欧美字幕免费| 91精品国产综合久久精品麻豆| 成人网男人的天堂| 日本sm残虐另类| 亚洲精品精品亚洲| 精品福利一二区| 欧美日韩在线播放一区| 国产精品一区二区91| 亚洲国产视频在线| 国产精品久久三区| 精品欧美一区二区久久| 欧美性做爰猛烈叫床潮| 国产91丝袜在线播放0| 爽好多水快深点欧美视频| 国产精品久久久一本精品 | 欧美一区二区三区公司| av男人天堂一区| 久久国内精品视频| 亚洲第一搞黄网站| 亚洲视频免费看| 久久先锋资源网| 欧美高清www午色夜在线视频| k8久久久一区二区三区| 国产精品自拍网站| 麻豆视频一区二区| 日韩经典中文字幕一区| 一区二区激情小说| 综合av第一页| 国产精品你懂的| 久久久久久久久久久99999| 在线综合视频播放| 欧美丝袜第三区| 色婷婷综合五月| 91丨九色丨蝌蚪富婆spa| 国产精品一二一区| 石原莉奈在线亚洲三区| 亚洲国产一区二区a毛片| 亚洲视频小说图片| 亚洲欧洲日产国产综合网| 久久精品免视看| 久久久99精品久久| 国产午夜精品在线观看| 久久九九久久九九| 国产亚洲va综合人人澡精品| www亚洲一区| 久久久国际精品| 亚洲国产经典视频| 亚洲天天做日日做天天谢日日欢 | 亚洲欧美激情在线| 中文字幕一区二区三区色视频| 中文字幕第一区| 亚洲国产精品成人综合色在线婷婷| 国产视频不卡一区| 国产精品剧情在线亚洲| 一色屋精品亚洲香蕉网站| 最新成人av在线| 亚洲永久免费av| 日韩成人一区二区三区在线观看| 青青草97国产精品免费观看 | 2欧美一区二区三区在线观看视频| 日韩欧美电影一二三| www国产精品av| 国产午夜亚洲精品羞羞网站| 国产精品免费视频网站| 亚洲区小说区图片区qvod| 亚洲第一成人在线| 精品一区精品二区高清| 福利91精品一区二区三区| 91原创在线视频| 欧美熟乱第一页| 久久综合中文字幕| 亚洲少妇30p| 久久国产精品99久久人人澡| 粉嫩一区二区三区性色av| 91原创在线视频| 日韩手机在线导航| 中文字幕亚洲一区二区av在线| 亚洲自拍偷拍av| 久久99精品一区二区三区| 99久久夜色精品国产网站| 欧美日韩一区不卡| 久久久久国产免费免费| 亚洲色图欧洲色图| 美女国产一区二区三区| av激情成人网| 日韩午夜激情视频| 亚洲精品免费在线| 国产精品一色哟哟哟| 欧美色综合网站| 国产日本欧美一区二区| 午夜精品久久久久久久99樱桃| 国产乱人伦精品一区二区在线观看| 91免费观看视频| 久久久国产精品麻豆| 首页欧美精品中文字幕| 成人国产电影网| 日韩欧美国产高清| 亚洲一区影音先锋| 成人在线综合网| 精品日韩av一区二区| 亚洲一二三四在线| 99久久婷婷国产综合精品| 日韩欧美国产成人一区二区| 一区二区三区免费网站| 国产在线麻豆精品观看| 欧美嫩在线观看| 亚洲六月丁香色婷婷综合久久| 韩国视频一区二区| 日韩一区二区不卡| 亚洲va国产天堂va久久en| 成人精品小蝌蚪| 国产欧美视频一区二区| 六月婷婷色综合| 91精品国产福利在线观看| 亚洲国产成人porn| 在线免费av一区| 亚洲综合免费观看高清在线观看| 不卡一区在线观看| 中文字幕一区二区三区蜜月| 成人在线一区二区三区| 久久精品水蜜桃av综合天堂|