99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS373 COIN、代做Python設計程序

時間:2024-05-24  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



DETECTION 
ASSIGNMENT
2024 Semester 1
1
Version 2.2Deadline: 3rd June 2024, 23:59pm
●In this assignment, you will write a Python code pipeline to automatically detect all the coins in the 
given images. This is an individual assignment, so every student has to submit this assignment! This 
assignment is worth 15 marks.
●We have provided you with 6 images for testing your pipeline (you can find the images in the 
‘Images/easy’ folder).
○Your pipeline should be able to detect all the coins in the image labelled with easy-level. This will 
reward you with up to 10 marks.
○For extension (up to 5 marks), try images labelled as hard-level images in the “Images/hard” folder.
○Write a short reflective report about your extension. (Using Latex/Word)
●To output the images shown on the slides for checking, you may use the following code:
fig, axs = pyplot.subplots(1, 1)
# replace image with your image that you want to output
axs.imshow(image, cmap='gray')
pyplot.axis('off')
pyplot.tight_layout()
pyplot.show()
2SUBMISSION
Please upload your submission as a zipped file of the assignment folder to the UoA 
Assignment Dropbox by following this link: 
https://canvas.auckland.ac.nz/courses/103807/assignments/3837**
●Don’t put any virtual environment (venv) folders into this zip file, it just adds to the size, and we 
will have our own testing environment.
●Your code for executing the main coin detection algorithm has to be located in the provided 
“CS3**_coin_detection.py” file!
●You can either put all of your code into that file, or use a modular structure with additional files 
(that, of course, have to be submitted in the zip file). However, we will only execute the 
“CS3**_coin_detection.py” file to see if your code works for the main component!
●The main component of the assignment (“CS3**_coin_detection.py”) must not use any non-built-in 
Python packages (e.g., PIL, OpenCV, NumPy, etc.) except for Matplotlib. Ensure your IDE hasn’t 
added any of these packages to your imports.
●For the extensions, please create a new Python source file called 
‘CS3**_coin_detection_extension.py’
; this will ensure your extension part doesn’t mix up with the 
main component of the assignment. Remember, your algorithm has to pass the main component 
first!
●Including a short PDF report about your extension.
●Important: Use a lab computer to test if your code works on Windows on a different machine 
(There are over 300 students, we cannot debug code for you if it doesn’t work!)
3easy_case_1 final output
easy_case_2 final output
easy_case_4 final output easy_case_6 final outputASSIGNMENT STEPS
5
1. Convert to greyscale and normalize
I. Convert to grey scale image: read input image using the ‘readRGBImageToSeparatePixelArrays()’ helper 
function. Convert the RGB image to greyscale (use RGB channel ratio 0.3 x red, 0.6 x green, 0.1 x blue), 
and round the pixel values to the nearest integer value.
II. Contrast Stretching: stretch the values between 0 to 255 (using the 5-95 percentile strategy) as described 
on lecture slides ImagesAndHistograms, p20-68). Do not round your 5% and 95% cumulative histogram 
values. Your output for this step should be the same as the image shown on Fig. 2.
Hint 1: see lecture slides ImagesAndHistograms and Coderunner Programming quiz in Week 10.
Hint 2: for our example image (Fig. 1), the 5_percentile (f_min) = 86 and the 95_percentile (f_max) = 1**.
Fig. 1: input Fig. 2: step 1 output
We will use this image 
(‘easy_case_1’) as an 
example on this slides2. Edge Detection
I. Apply a 3x3 Scharr filter in horizontal (x) and vertical (y) directions independently to get the edge maps (see 
Fig. 3 and Fig. 4), you should store the computed value for each individual pixel as Python float.
II. Take the absolute value of the sum between horizontal (x) and vertical (y) direction edge maps (see Hint 4). You 
do not need to round the numbers. The output for this step should be the same as the image shown on Fig. 5.
Hint 1: see lecture slides on edge detection and Coderunner Programming quiz in Week 11.
Hint 2: please use the 3x3 Scharr filter shown below for this assignment:
6
Hint 4: you should use the BorderIgnore option and set border 
pixels to zero in output, as stated on the slide Filtering, p13.
Hint 5: for computing the edge strength, you may use the 
following equation:
gm
(x, y) = |gx
(x, y)| + |gy
(x, y)|
Absolute grey level 
gradient on the 
horizontal direction
Absolute grey level 
gradient on the vertical 
direction
Edge map on 
horizontal and 
vertical
Fig. 5: Step 2 
output (gm
)
Fig. 4: Edge map 
(gy
) on vertical 
direction
Fig. 3: Edge map 
(gx
) on horizontal 
direction7
3. Image Blurring
Apply 5x5 mean filter(s) to image. Your output for this step should be the same as the image shown on 
Fig. 7.
Hint 1: do not round your output values.
Hint 2: after computing the mean filter for one 5x5 window, you should take the absolute value of your 
result before moving to the next window.
Hint 3: you should use the BorderIgnore option and set border pixels to zero in output, as stated on the 
slide Filtering, p13.
Hint 3: try applying the filter three times to the image sequentially.
Hint 4: see lecture slides on image filtering and Coderunner Programming quiz in Week 11.
Fig. 7: Step 3 output Fig. 6: Grayscale histogram for output from step 38
4. Threshold the Image
Perform a simple thresholding operation to segment the coin(s) from the black background. After 
performing this step, you should have a binary image (see Fig. 10).
Hint 1: 22 would be a reasonable value for thresholding for our example image, set any pixel value 
smaller than 22 to 0; this represents your background (region 1) in the image, and set any pixel value 
bigger or equal to 22 to 255; which represents your foreground (region 2) – the coin.
Hint 2: see lecture slides on image segmentation (p7) and see Programming quiz on Coderunner on 
Week 10.
Fig. 9: Step 3 output Fig. 10: Step 4 output Fig. 8: Grayscale histogram for output from step 39
5. Erosion and Dilation
Perform several dilation steps followed by several erosion steps. You may need to repeat the dilation 
and erosion steps multiple times. Your output for this step should be the same as the image shown on Fig. 
11.
Hint 1: use circular 5x5 kernel, see Fig. 12 for the kernel details.
Hint 2: the filtering process has to access pixels that are outside the input image. So, please use the 
BoundaryZeroPadding option, see lecture slides Filtering, p13.
Hint 2: try to perform dilation 3-4 times first, and then erosion 3-4 times. You may need to try a couple 
of times to get the desired output.
Hint 3: see lecture slides on image morphology and Coderunner Programming quiz in Week 12.
Fig. 11: Step 5 output
Fig. 12: Circular 5x5 kernel for 
dilation and erosion10
6. Connected Component Analysis
Perform a connected component analysis to find all connected components. Your output for this 
step should be the same as the image shown on Fig. 13.
After erosion and dilation, you may find there are still some holes in the binary image. That is 
fine, as long as it is one connected component.
Hint 1: see lecture slides on Segmentation_II, p4-6, and Coderunner Programming quiz in Week 
12.
Fig. 13: Step 6 outputWe will provide code for drawing the bounding box(es) 
in the image, so please store all the bounding box 
locations in a Python list called ‘bounding_box_list’, so 
our program can loop through all the bounding boxes 
and draw them on the output image.
Below is an example of the ‘bounding_box_list’ for our 
example image on the right.
11
7. Draw Bounding Box
Extract the bounding box(es) around all regions that your pipeline has found by looping over 
the image and looking for the minimum and maximum x and y coordinates of the pixels in the 
previously determined connected components. Your output for this step should be the same as 
the image shown on Fig. 14.
Make sure you record the bounding box locations for each of the connected components your 
pipeline has found.
Bounding_box_list=[[74, 68, 312, 303]]
A list of list
Bounding_box_min_x
Bounding_box_min_y Bounding_box_max_x
Bounding_box_max_y
Fig. 14: Step 7 outputInput
Drawing 
Bounding Box
Color to Gray Scale 
and Normalize
Edge 
Detection
Image 
Blurring Thresholding
Dilation and 
Erosion
Connected 
Component Analysis
12
Coin Detection Full Pipelineeasy_case_1 final output easy_case_2 final output
easy_case_4 final output easy_case_6 final outputEXTENSION
For this extension (worth 5 marks), you are expected to alter some parts of the pipeline.
●Using Laplacian filter for image edge detection
○Please use the Laplacian filter kernel on the right (see Fig. 15).
○You may need to change subsequent steps as well, if you decide to
use Laplacian filter.
●Output number of coins your pipeline has detected.
●Testing your pipeline on the hard-level images we provided.
○For some hard-level images, you may need to look at the size of the connected components to decide which 
component is the coin.
●Identify the type of coins (whether it is a **dollar coin, 50-cent coin, etc.). 
○Since different type of coins have different sizes, you may want to compute the area of the bounding box in 
the image to identify them.
●etc.
Submissions that make the most impressive contributions will get full marks. Please create a new 
Python source file called ‘CS3**_coin_detection_extension.py’ for your extension part, and include a 
short PDF report about your extension. Try to be creative!
14
Fig. 15: Laplacian filter kernel

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:INTE2401代寫、代做Java設計程序
  • 下一篇:CS 369代做、代寫Python編程語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                日韩免费高清视频| 精品国产精品一区二区夜夜嗨| 亚州成人在线电影| 国产精品一区二区男女羞羞无遮挡| 国产aⅴ综合色| 精品国产99国产精品| 亚洲精品乱码久久久久久| 成人综合激情网| 中日韩免费视频中文字幕| 天天色 色综合| 91精品国产乱| 日韩av电影免费观看高清完整版 | 日韩免费高清电影| 日日摸夜夜添夜夜添国产精品| 91色视频在线| 人人精品人人爱| 精品少妇一区二区三区在线播放 | 美腿丝袜亚洲三区| 8v天堂国产在线一区二区| 麻豆久久久久久| 国产精品久久久久久久久快鸭| 在线观看免费视频综合| 日本乱码高清不卡字幕| 欧美中文字幕一区二区三区亚洲| 中文字幕佐山爱一区二区免费| 97精品国产97久久久久久久久久久久| 亚洲人一二三区| 欧美一区午夜精品| 成人动漫一区二区三区| 亚洲123区在线观看| 国产精品乱人伦| 制服丝袜日韩国产| 色www精品视频在线观看| 亚洲国产日韩精品| 亚洲日穴在线视频| 国产午夜精品久久| 在线不卡中文字幕播放| 色又黄又爽网站www久久| 久久99精品国产麻豆婷婷| 亚洲高清一区二区三区| 一区二区三区在线观看欧美| 国产偷国产偷亚洲高清人白洁| 欧美日韩国产综合一区二区三区| 91亚洲国产成人精品一区二三| 国产精品一区二区视频| 国产精品性做久久久久久| 九九精品视频在线看| 日本在线观看不卡视频| 免费一级片91| 精品一区二区在线播放| 国产美女在线精品| 国产99久久久国产精品| 成人aa视频在线观看| 亚洲欧洲制服丝袜| 久久99精品国产.久久久久| 岛国一区二区在线观看| 国产.精品.日韩.另类.中文.在线.播放| 懂色中文一区二区在线播放| 欧美影院午夜播放| 久久天堂av综合合色蜜桃网| 亚洲国产欧美另类丝袜| 国产69精品一区二区亚洲孕妇| 精品视频色一区| 国产精品蜜臀av| 美女尤物国产一区| 91福利国产精品| 国产精品嫩草99a| 久久99久久99精品免视看婷婷 | 成人丝袜高跟foot| 555www色欧美视频| 亚洲成人在线网站| 色94色欧美sute亚洲线路一ni| 国产欧美精品区一区二区三区| 开心九九激情九九欧美日韩精美视频电影| 在线观看91视频| 亚洲精品亚洲人成人网在线播放| 成人精品gif动图一区| 国产亚洲成av人在线观看导航| 精品亚洲aⅴ乱码一区二区三区| 911精品产国品一二三产区| 一区二区三区欧美在线观看| 91蜜桃免费观看视频| 亚洲欧美区自拍先锋| 91视频观看视频| 亚洲美女一区二区三区| 一本色道综合亚洲| 日韩一区中文字幕| 成人动漫一区二区在线| 中文字幕av一区 二区| www.亚洲色图| 亚洲靠逼com| 欧美偷拍一区二区| 亚洲电影视频在线| 91精品国产综合久久久久久久久久 | 久久99九九99精品| 久久这里只有精品首页| 国产精品123| 一区二区中文视频| 欧美性猛片xxxx免费看久爱| 日韩国产一二三区| 欧美大胆人体bbbb| 国产一区二区电影| 综合在线观看色| 色香蕉成人二区免费| 亚洲国产欧美在线| 欧美一区二区精品久久911| 久久国产精品色婷婷| 久久久久久久网| av激情综合网| 天涯成人国产亚洲精品一区av| 日韩欧美黄色影院| 国产激情91久久精品导航| 奇米四色…亚洲| 亚洲成a人v欧美综合天堂| 夜夜操天天操亚洲| 一区二区三区四区不卡视频| 日韩成人午夜电影| 亚洲一区免费视频| 美女视频黄久久| www.66久久| 婷婷国产在线综合| 久久99国产乱子伦精品免费| 国产成都精品91一区二区三| 99精品欧美一区二区三区小说| 欧亚洲嫩模精品一区三区| 欧美一区二区视频在线观看2022 | 五月天激情综合| 欧美亚洲国产bt| 久久久亚洲高清| 亚洲特级片在线| 欧美国产精品一区二区三区| 国产欧美精品国产国产专区| 午夜精品久久久久久久99水蜜桃 | 一区二区免费看| 秋霞影院一区二区| 中文字幕欧美日本乱码一线二线| 欧美日韩亚洲综合在线 | 亚洲二区在线视频| 国产在线一区二区综合免费视频| 99久久精品情趣| 有码一区二区三区| 欧美色电影在线| 亚洲精品午夜久久久| 成人av网站在线观看免费| 精品av综合导航| 九一久久久久久| 欧美精品久久天天躁| 免费高清在线一区| 午夜欧美电影在线观看| 国产精品国模大尺度视频| 91麻豆国产精品久久| 成人自拍视频在线观看| 麻豆精品久久精品色综合| 一区二区三区色| 亚洲免费色视频| 自拍偷拍国产亚洲| 国产精品福利av| 一区免费观看视频| 亚洲免费观看高清完整版在线观看 | 欧美精品黑人性xxxx| 色欧美日韩亚洲| 91视频在线观看| 色综合久久综合网| 一本到高清视频免费精品| 91视频国产观看| 欧美亚洲动漫精品| 在线播放中文字幕一区| 91免费版在线看| 91黄色激情网站| 色哟哟国产精品| 91久久精品网| 欧美日韩免费观看一区三区| 欧美日韩一区二区三区免费看| 欧美性感一区二区三区| 欧美丰满高潮xxxx喷水动漫| 宅男在线国产精品| 欧美精品一区二区精品网| 精品成a人在线观看| 国产日韩亚洲欧美综合| 中文字幕日韩精品一区| 亚洲欧美日韩久久| 亚洲一区二区高清| 麻豆精品国产传媒mv男同| 国产成人免费视频一区| 91丨九色丨蝌蚪富婆spa| 欧美手机在线视频| 欧美成人猛片aaaaaaa| 国产亚洲一本大道中文在线| 国产精品亲子伦对白| 亚洲国产sm捆绑调教视频| 美国十次综合导航| 成人深夜在线观看| 欧洲av在线精品| 精品国产乱码久久久久久图片 | 高清成人免费视频| 99久久精品情趣| 欧美一区二区三区小说| 亚洲国产成人一区二区三区| 性做久久久久久久久| 国产成人免费av在线|