99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

CS 369代做、代寫Python編程語言

時(shí)間:2024-05-24  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



CS 369 2024 Assignment 4
See Canvas for due dates
In the ffrst part of this assignment, we use a Hidden Markov Model to model secondary
structure in protein sequences and implement a couple of algorithms we saw in lectures.
In the second part, we simulate sequences down a tree according to the Jukes-Cantor
model then use distance methods to try to reconstruct the tree.
Write your code in Python and present your code embedded in a report in a Jupyter
Notebook. Make sure you test your code thoroughly and write clear, commented code
that others can understand.
Submit two ffles to Canvas: the .ipynb and .html both showing code and results by 10pm
on the due date.
There are 30 marks in total for this assessment.
1. [14 marks total] Suppose we wish to estimate basic secondary structure in protein
(amino acid) sequences. The model we consider is a simplistic rendition of the
model discussed in S C. Schmidler et al. (2004) Bayesian Segmentation of Protein
Secondary Structure, doi:10.1089/10665270050081496
We assume that at each point of the sequence, the residue is associated with one
of three secondary structures: α-helix, β-strand and loops which we label H, S
and T, respectively. To simplify the problem, we classify the amino acids as either
hydrophobic, hydrophilic or neutral (B, I or N, respectively) so a sequence can be
represented by this 3-letter alphabet.
In a α-helix, the residues are 15% neutral, 20% hydrophobic and 65% hydrophilic.
In a β-strand, they are 30%, 60%, 10% and in a loop they are 70%, 15%, 15%.
Assume that all secondary structures have geometrically distributed length with
α-helices having mean 15 residues, β-strands having a mean of 8 residues and loops
a mean of 6 residues. A β-strand is followed by an α-helix 40% of the time and a
loop 60% of the time. An α-helix is followed by a β-strand 30% of the time and a
loop 70% of the time and a loop is equally likely to be followed by a strand or a
helix. At the start of a sequence, any structure is equally likely.
When writing code below, work in natural logarithms throughout to make your
calculations robust to numerical error.
(a) [3 marks] Sketch a diagram of the HMM (a hand-drawn and scanned picture
is ffne). In your diagram, show only state nodes and transitions. Show the
emission probabilities using a separate table.
Note that the transition probabilities of states to themselves (e.g., aHH) are
not given. Derive them by noticing that you are given the expected lengths
of α-helices, β-strands and loops, and that if a quantity L is geometrically
distributed with parameter p then the expected value of L is E[L] = 1/p.
Make sure you use the correct parametrisation of the geometric distribution
1(noting that you can’t have a secondary structure of length 0) and remember
that
P
l
akl = 1 for any state k.
(b) [3 marks] Write a method to simulate state and symbol sequences of arbitrary
length from the HMM. Your method should take sequence length, and model
parameters (a and e) as arguments. Simulate and print out a state and symbol
sequence of length 200.
(c) [3 mark] Write a method to calculate the natural logarithm of the joint probability
P(x, π). Your method should take x, π, and model parameters as
arguments.
Use your method to calculate P(x, π) for π and x given below and for the
sequences you simulated in Q1b.
π = S,S,H,H,H,T,T,S,S,S,H,T,T,H,H,H,S,S,S,S,S,S
x = B,I,B,B,N,I,N,B,N,I,N,B,I,N,B,I,I,N,B,B,N,N
(d) [5 marks] Implement the forward algorithm for HMMs to calculate the natural
logarithm of the probability P(x). Your method should take x as an argument.
Note that we don’t model the end state here.
Use your method to calculate log(P(x)) for π and x given in Q1c and for the
sequences you simulated in Q1b.
How does P(x) compare to P(x, π) for the examples you calculated? Does
this relationship hold in general? Explain your answer.
22. [16 marks total] In this question you will write a method that simulates random
trees, simulates sequences using a mutation process on these trees, calculate a
distance matrix from the simulated sequences and then, using existing code, reconstruct
 the tree from this distance matrix.
(a) [5 marks] Write a method that simulates trees according to the Yule model
(described below) with takes as input the number of leaves, n, and the branching
 parameter, λ. Use the provided Python classes.
The Yule model is a branching process that suggests a method of constructing
trees with n leaves. From each leaf, start a lineage going back in time. Each
lineage coalesces with others at rate λ. When there k lineages, the total rate
of coalescence in the tree is kλ. Thus, we can generate a Yule tree with n
leaves as follows:
Set k = n,t = 0.
Make n leaf nodes with time t and labeled from 1 to n. This is the set of
available nodes.
While k > 1, iterate:
Generate a time tk ∼ Exp (kλ). Set t = t + tk.
Make a new node, m, with height t and choose two nodes, i and j,
uniformly at random from the set of available nodes. Make i and j
the child nodes of m.
Add m to the set of available nodes and remove i and j from this set.
Set k = k-1.
Simulate 1000 trees with λ = 0.5 and n = 10 and check that the mean height
of the trees (that is, the time of the root node) agrees with the theoretical
mean of 3.86.
Use the provided plot tree method to include a picture of a simulated tree
with 10 leaves and λ = 0.5 in your report. To embed the plot in your report,
include in the ffrst cell of your notebook the command %matplotlib inline
(b) [5 marks] The Jukes-Cantor model of DNA sequence evolution is simple:
each site mutates at rate µ and when a mutation occurs, a new base is chosen
uniformly at random from the four possible bases, {A, C, G, T}. If we ignore
mutations from base X to base X, the mutation rate is
3
4
µ. All sites mutate
independently of each other. A sequence that has evolved over time according
to the Jukes-Cantor model has each base equally likely to occur at each site.
The method mutate is provided to simulate the mutation process.
Write a method to simulate sequences down a simulated tree according to the
Jukes-Cantor model.
Your method should take a tree with n leaves, sequence length L, and a
mutation rate µ. It should return either a matrix of sequences corresponding
to nodes in the tree or the tree with sequences stored at the nodes.
3Your method should generate a uniform random sequence of length L at the
root node and recursively mutate it down the branches of the tree, using the
node heights to calculate branch length.
In your report, include a simulated tree with n = 10 and λ = 0.5 and a set
of sequences of length L = 20 and mutation parameter µ = 0.5 simulated on
that tree.
(c) [3 marks] Write a method to calculate the Jukes-Cantor distance matrix, d,
from a set of sequences, where dij is the distance between the ith and the
jth sequences. Recall that the Jukes-Cantor distance for sequences x and y
is deffned by
where fxy is the fraction of differing sites between x and y. Since we will be
dealing with short sequences, use the following deffnition of fxy so that the
distances are well-deffned:
fxy = min
where Dxy is the number of differing sites between x and y and L is the length
of x.
Include a simulated set of sequences of length L = 20 from the tree leaves and
corresponding distance matrix in your report for a tree with n = 10, λ = 0.5
and mutation parameter µ = 0.5.
(d) [3 marks] Now simulate a tree with n = 10 and λ = 0.5 and on that tree,
simulate three sets of sequences with lengths L = 20, L = 50 and L = 200,
respectively, with ffxed µ = 0.1. For each simulated set of sequences, calculate
the distance matrix and print it out.
Then reconstruct the tree using the provided compute upgma tree method.
Use the plot tree method to include a plot of the original tree and a plot of
the reconstructed tree for each distance matrix.
Comment on the quality of the reconstructions and the effect that increasing
the sequence length has on the accuracy of the reconstruction.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp










 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫CS373 COIN、代做Python設(shè)計(jì)程序
  • 下一篇:CSSE7030代做、代寫Python程序設(shè)計(jì)
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士1號線
    合肥機(jī)場巴士1號線
  • 短信驗(yàn)證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          午夜精品一区二区三区电影天堂| 久久久视频精品| 亚洲男女毛片无遮挡| 亚洲综合欧美| 欧美在线观看视频| 美日韩精品免费| 欧美色图五月天| 激情国产一区| 夜夜嗨网站十八久久| 午夜欧美精品久久久久久久| 久久天堂av综合合色| 欧美日韩国产91| 国产真实乱偷精品视频免| 亚洲日本电影在线| 欧美一二区视频| 欧美精品久久99| 国产日韩欧美精品一区| 亚洲理论电影网| 久久成人国产精品| 欧美日韩国产一区二区| 韩国一区二区三区美女美女秀| 亚洲看片免费| 久久一区中文字幕| 国产精品videosex极品| 亚洲国产精品久久久| 亚洲欧美日韩综合国产aⅴ| 欧美成人在线免费视频| 国产女主播一区二区| 日韩亚洲成人av在线| 久久精品中文字幕一区二区三区 | 狠狠入ady亚洲精品| 亚洲香蕉网站| 欧美欧美天天天天操| 国内一区二区在线视频观看 | 久久综合成人精品亚洲另类欧美| 欧美日韩精选| 亚洲高清视频在线观看| 亚洲欧美激情诱惑| 国产精品盗摄久久久| 亚洲精品永久免费| 美女网站久久| 韩国一区电影| 久久精品国产免费看久久精品 | 久久久噜噜噜久久人人看| 国产精品私房写真福利视频 | 国产精品一区二区三区久久| 夜夜嗨av一区二区三区网页| 欧美aⅴ99久久黑人专区| 激情小说另类小说亚洲欧美| 久久www免费人成看片高清| 国产精品久在线观看| 一区二区三区免费观看| 欧美日本中文字幕| 夜夜爽99久久国产综合精品女不卡 | 在线视频精品一| 欧美日韩视频一区二区三区| 亚洲日韩第九十九页| 免费亚洲一区二区| 亚洲国产精品ⅴa在线观看 | 久久狠狠亚洲综合| 狠狠色伊人亚洲综合成人| 久久精品青青大伊人av| 精品动漫一区二区| 六月婷婷久久| 亚洲片区在线| 欧美日韩综合一区| 亚洲中字在线| 国产在线播放一区二区三区 | 亚洲伊人伊色伊影伊综合网| 国产精品久久国产精麻豆99网站| 亚洲婷婷综合久久一本伊一区| 欧美午夜精品理论片a级按摩| 亚洲无限av看| 国产一区二区三区视频在线观看| 久久久久综合一区二区三区| 亚洲国产免费| 国产精品久久网站| 久久精品综合网| 亚洲人成人99网站| 国产精品国产精品国产专区不蜜| 午夜久久久久久久久久一区二区| 国产伦精品一区二区三区视频孕妇 | 美女国产一区| 亚洲午夜av电影| 韩国在线一区| 欧美日韩亚洲不卡| 欧美一区激情| 亚洲精品久久久蜜桃| 国产精品久久久久久超碰| 久久久999精品免费| 亚洲精品五月天| 国产精品永久免费观看| 久久综合影音| 亚洲伊人伊色伊影伊综合网| 国内外成人在线视频| 欧美日韩免费一区二区三区视频| 欧美在线啊v| 一区二区欧美在线观看| 国产在线视频欧美| 欧美涩涩网站| 欧美成人免费va影院高清| 午夜天堂精品久久久久| 91久久久久久国产精品| 国户精品久久久久久久久久久不卡| 欧美激情四色| 久久这里只有精品视频首页| 亚洲一区二区三区成人在线视频精品| 激情文学综合丁香| 国产精品视频网| 欧美日韩不卡视频| 裸体丰满少妇做受久久99精品| 午夜精品一区二区三区在线| 夜夜嗨av一区二区三区网站四季av| 在线播放亚洲| 在线成人黄色| 韩国视频理论视频久久| 国产色视频一区| 国产精品亚洲网站| 欧美色道久久88综合亚洲精品| 欧美ed2k| 美女主播精品视频一二三四| 久久久久国产精品一区| 欧美亚洲一区三区| 亚洲欧美综合| 一区二区三区 在线观看视| 亚洲第一网站免费视频| 黑人极品videos精品欧美裸| 国产日韩欧美三区| 国产欧美日韩免费| 国产欧美精品一区aⅴ影院| 国产精品久久久久久久久搜平片 | 欧美一乱一性一交一视频| 亚洲性av在线| 午夜久久黄色| 久久aⅴ国产紧身牛仔裤| 欧美一区二区三区四区夜夜大片| 亚洲欧美电影在线观看| 欧美一区二区三区播放老司机 | 欧美在线视频免费观看| 欧美有码视频| 久久精品中文字幕一区二区三区 | 久久综合图片| 欧美激情国产日韩| 欧美另类在线观看| 国产精品久久久久秋霞鲁丝| 国产精品免费看片| 国产一区在线免费观看| 在线观看一区视频| 亚洲人成网在线播放| 一区二区三区日韩欧美| 欧美亚洲日本网站| 久久精品亚洲一区| 免费成人性网站| 欧美色网在线| 国外成人在线视频| 亚洲免费观看视频| 亚洲欧美日韩在线高清直播| 欧美一区二区三区在线播放| 久久在线播放| 国产精品福利片| 韩国一区电影| 宅男噜噜噜66一区二区| 久久电影一区| 欧美理论电影在线播放| 国产精品一区三区| 亚洲国产清纯| 欧美自拍丝袜亚洲| 欧美日韩国产小视频| 国产欧美日韩另类一区 | 国产精品在线看| 1024欧美极品| 欧美亚洲自偷自偷| 欧美国产日产韩国视频| 国产精品日产欧美久久久久| 亚洲国产精品传媒在线观看| 亚洲尤物精选| 欧美精品在线一区二区| 国产一区二区三区观看| 艳女tv在线观看国产一区| 欧美一区二区三区四区视频| 欧美激情精品久久久久久黑人| 国产日韩欧美一区二区| 99国产精品视频免费观看| 久久一综合视频| 国产精品午夜久久| 一本一本a久久| 蜜乳av另类精品一区二区| 国产精品自拍视频| 亚洲视频一区在线| 欧美成人影音| 亚洲福利专区| 久久久久网址| 国产婷婷色一区二区三区| 亚洲午夜在线观看视频在线| 欧美国产三区| **网站欧美大片在线观看| 欧美在线高清视频| 国产欧美精品久久| 欧美亚洲视频在线观看| 欧美性猛片xxxx免费看久爱|