合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        CS 369代做、代寫Python編程語言

        時間:2024-05-24  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        CS 369 2024 Assignment 4
        See Canvas for due dates
        In the ffrst part of this assignment, we use a Hidden Markov Model to model secondary
        structure in protein sequences and implement a couple of algorithms we saw in lectures.
        In the second part, we simulate sequences down a tree according to the Jukes-Cantor
        model then use distance methods to try to reconstruct the tree.
        Write your code in Python and present your code embedded in a report in a Jupyter
        Notebook. Make sure you test your code thoroughly and write clear, commented code
        that others can understand.
        Submit two ffles to Canvas: the .ipynb and .html both showing code and results by 10pm
        on the due date.
        There are 30 marks in total for this assessment.
        1. [14 marks total] Suppose we wish to estimate basic secondary structure in protein
        (amino acid) sequences. The model we consider is a simplistic rendition of the
        model discussed in S C. Schmidler et al. (2004) Bayesian Segmentation of Protein
        Secondary Structure, doi:10.1089/10665270050081496
        We assume that at each point of the sequence, the residue is associated with one
        of three secondary structures: α-helix, β-strand and loops which we label H, S
        and T, respectively. To simplify the problem, we classify the amino acids as either
        hydrophobic, hydrophilic or neutral (B, I or N, respectively) so a sequence can be
        represented by this 3-letter alphabet.
        In a α-helix, the residues are 15% neutral, 20% hydrophobic and 65% hydrophilic.
        In a β-strand, they are 30%, 60%, 10% and in a loop they are 70%, 15%, 15%.
        Assume that all secondary structures have geometrically distributed length with
        α-helices having mean 15 residues, β-strands having a mean of 8 residues and loops
        a mean of 6 residues. A β-strand is followed by an α-helix 40% of the time and a
        loop 60% of the time. An α-helix is followed by a β-strand 30% of the time and a
        loop 70% of the time and a loop is equally likely to be followed by a strand or a
        helix. At the start of a sequence, any structure is equally likely.
        When writing code below, work in natural logarithms throughout to make your
        calculations robust to numerical error.
        (a) [3 marks] Sketch a diagram of the HMM (a hand-drawn and scanned picture
        is ffne). In your diagram, show only state nodes and transitions. Show the
        emission probabilities using a separate table.
        Note that the transition probabilities of states to themselves (e.g., aHH) are
        not given. Derive them by noticing that you are given the expected lengths
        of α-helices, β-strands and loops, and that if a quantity L is geometrically
        distributed with parameter p then the expected value of L is E[L] = 1/p.
        Make sure you use the correct parametrisation of the geometric distribution
        1(noting that you can’t have a secondary structure of length 0) and remember
        that
        P
        l
        akl = 1 for any state k.
        (b) [3 marks] Write a method to simulate state and symbol sequences of arbitrary
        length from the HMM. Your method should take sequence length, and model
        parameters (a and e) as arguments. Simulate and print out a state and symbol
        sequence of length 200.
        (c) [3 mark] Write a method to calculate the natural logarithm of the joint probability
        P(x, π). Your method should take x, π, and model parameters as
        arguments.
        Use your method to calculate P(x, π) for π and x given below and for the
        sequences you simulated in Q1b.
        π = S,S,H,H,H,T,T,S,S,S,H,T,T,H,H,H,S,S,S,S,S,S
        x = B,I,B,B,N,I,N,B,N,I,N,B,I,N,B,I,I,N,B,B,N,N
        (d) [5 marks] Implement the forward algorithm for HMMs to calculate the natural
        logarithm of the probability P(x). Your method should take x as an argument.
        Note that we don’t model the end state here.
        Use your method to calculate log(P(x)) for π and x given in Q1c and for the
        sequences you simulated in Q1b.
        How does P(x) compare to P(x, π) for the examples you calculated? Does
        this relationship hold in general? Explain your answer.
        22. [16 marks total] In this question you will write a method that simulates random
        trees, simulates sequences using a mutation process on these trees, calculate a
        distance matrix from the simulated sequences and then, using existing code, reconstruct
         the tree from this distance matrix.
        (a) [5 marks] Write a method that simulates trees according to the Yule model
        (described below) with takes as input the number of leaves, n, and the branching
         parameter, λ. Use the provided Python classes.
        The Yule model is a branching process that suggests a method of constructing
        trees with n leaves. From each leaf, start a lineage going back in time. Each
        lineage coalesces with others at rate λ. When there k lineages, the total rate
        of coalescence in the tree is kλ. Thus, we can generate a Yule tree with n
        leaves as follows:
        Set k = n,t = 0.
        Make n leaf nodes with time t and labeled from 1 to n. This is the set of
        available nodes.
        While k > 1, iterate:
        Generate a time tk ∼ Exp (kλ). Set t = t + tk.
        Make a new node, m, with height t and choose two nodes, i and j,
        uniformly at random from the set of available nodes. Make i and j
        the child nodes of m.
        Add m to the set of available nodes and remove i and j from this set.
        Set k = k-1.
        Simulate 1000 trees with λ = 0.5 and n = 10 and check that the mean height
        of the trees (that is, the time of the root node) agrees with the theoretical
        mean of 3.86.
        Use the provided plot tree method to include a picture of a simulated tree
        with 10 leaves and λ = 0.5 in your report. To embed the plot in your report,
        include in the ffrst cell of your notebook the command %matplotlib inline
        (b) [5 marks] The Jukes-Cantor model of DNA sequence evolution is simple:
        each site mutates at rate µ and when a mutation occurs, a new base is chosen
        uniformly at random from the four possible bases, {A, C, G, T}. If we ignore
        mutations from base X to base X, the mutation rate is
        3
        4
        µ. All sites mutate
        independently of each other. A sequence that has evolved over time according
        to the Jukes-Cantor model has each base equally likely to occur at each site.
        The method mutate is provided to simulate the mutation process.
        Write a method to simulate sequences down a simulated tree according to the
        Jukes-Cantor model.
        Your method should take a tree with n leaves, sequence length L, and a
        mutation rate µ. It should return either a matrix of sequences corresponding
        to nodes in the tree or the tree with sequences stored at the nodes.
        3Your method should generate a uniform random sequence of length L at the
        root node and recursively mutate it down the branches of the tree, using the
        node heights to calculate branch length.
        In your report, include a simulated tree with n = 10 and λ = 0.5 and a set
        of sequences of length L = 20 and mutation parameter µ = 0.5 simulated on
        that tree.
        (c) [3 marks] Write a method to calculate the Jukes-Cantor distance matrix, d,
        from a set of sequences, where dij is the distance between the ith and the
        jth sequences. Recall that the Jukes-Cantor distance for sequences x and y
        is deffned by
        where fxy is the fraction of differing sites between x and y. Since we will be
        dealing with short sequences, use the following deffnition of fxy so that the
        distances are well-deffned:
        fxy = min
        where Dxy is the number of differing sites between x and y and L is the length
        of x.
        Include a simulated set of sequences of length L = 20 from the tree leaves and
        corresponding distance matrix in your report for a tree with n = 10, λ = 0.5
        and mutation parameter µ = 0.5.
        (d) [3 marks] Now simulate a tree with n = 10 and λ = 0.5 and on that tree,
        simulate three sets of sequences with lengths L = 20, L = 50 and L = 200,
        respectively, with ffxed µ = 0.1. For each simulated set of sequences, calculate
        the distance matrix and print it out.
        Then reconstruct the tree using the provided compute upgma tree method.
        Use the plot tree method to include a plot of the original tree and a plot of
        the reconstructed tree for each distance matrix.
        Comment on the quality of the reconstructions and the effect that increasing
        the sequence length has on the accuracy of the reconstruction.

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp










         

        掃一掃在手機打開當前頁
      1. 上一篇:代寫CS373 COIN、代做Python設計程序
      2. 下一篇:CSSE7030代做、代寫Python程序設計
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
        合肥機場巴士1號線
        合肥機場巴士1號線
      4. 短信驗證碼 酒店vi設計 NBA直播 幣安下載

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 无码播放一区二区三区| 国产一区二区好的精华液 | 国产精品久久无码一区二区三区网| 视频在线观看一区二区| 中文字幕日韩精品一区二区三区| 国产av熟女一区二区三区| 无码AⅤ精品一区二区三区| 日韩视频一区二区在线观看| 色噜噜狠狠一区二区三区| 国偷自产Av一区二区三区吞精 | 成人精品一区二区户外勾搭野战| 成人无码一区二区三区| 日韩经典精品无码一区| 国产一区二区精品久久岳√| 无码中文字幕一区二区三区| 欲色aV无码一区二区人妻| 亚洲av无码一区二区三区网站| 果冻传媒一区二区天美传媒| asmr国产一区在线| 国产精品女同一区二区久久 | 无码AV一区二区三区无码 | 亚洲综合av永久无码精品一区二区| 国产一区二区三区不卡在线看| 国产精品久久久久久一区二区三区| 色噜噜狠狠一区二区| 亚欧免费视频一区二区三区| 老熟妇仑乱视频一区二区| 91一区二区三区四区五区 | 亚洲欧洲∨国产一区二区三区| 中文字幕一区日韩在线视频| 国产亚洲日韩一区二区三区| 国产内射999视频一区| 日韩免费视频一区二区| 麻豆一区二区在我观看| 亚洲熟女www一区二区三区| 久久中文字幕无码一区二区| 精品国产天堂综合一区在线| jizz免费一区二区三区| 国产精品毛片VA一区二区三区| 国产99久久精品一区二区| 丰满爆乳无码一区二区三区|