99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

CS 369代做、代寫Python編程語言

時(shí)間:2024-05-24  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



CS 369 2024 Assignment 4
See Canvas for due dates
In the ffrst part of this assignment, we use a Hidden Markov Model to model secondary
structure in protein sequences and implement a couple of algorithms we saw in lectures.
In the second part, we simulate sequences down a tree according to the Jukes-Cantor
model then use distance methods to try to reconstruct the tree.
Write your code in Python and present your code embedded in a report in a Jupyter
Notebook. Make sure you test your code thoroughly and write clear, commented code
that others can understand.
Submit two ffles to Canvas: the .ipynb and .html both showing code and results by 10pm
on the due date.
There are 30 marks in total for this assessment.
1. [14 marks total] Suppose we wish to estimate basic secondary structure in protein
(amino acid) sequences. The model we consider is a simplistic rendition of the
model discussed in S C. Schmidler et al. (2004) Bayesian Segmentation of Protein
Secondary Structure, doi:10.1089/10665270050081496
We assume that at each point of the sequence, the residue is associated with one
of three secondary structures: α-helix, β-strand and loops which we label H, S
and T, respectively. To simplify the problem, we classify the amino acids as either
hydrophobic, hydrophilic or neutral (B, I or N, respectively) so a sequence can be
represented by this 3-letter alphabet.
In a α-helix, the residues are 15% neutral, 20% hydrophobic and 65% hydrophilic.
In a β-strand, they are 30%, 60%, 10% and in a loop they are 70%, 15%, 15%.
Assume that all secondary structures have geometrically distributed length with
α-helices having mean 15 residues, β-strands having a mean of 8 residues and loops
a mean of 6 residues. A β-strand is followed by an α-helix 40% of the time and a
loop 60% of the time. An α-helix is followed by a β-strand 30% of the time and a
loop 70% of the time and a loop is equally likely to be followed by a strand or a
helix. At the start of a sequence, any structure is equally likely.
When writing code below, work in natural logarithms throughout to make your
calculations robust to numerical error.
(a) [3 marks] Sketch a diagram of the HMM (a hand-drawn and scanned picture
is ffne). In your diagram, show only state nodes and transitions. Show the
emission probabilities using a separate table.
Note that the transition probabilities of states to themselves (e.g., aHH) are
not given. Derive them by noticing that you are given the expected lengths
of α-helices, β-strands and loops, and that if a quantity L is geometrically
distributed with parameter p then the expected value of L is E[L] = 1/p.
Make sure you use the correct parametrisation of the geometric distribution
1(noting that you can’t have a secondary structure of length 0) and remember
that
P
l
akl = 1 for any state k.
(b) [3 marks] Write a method to simulate state and symbol sequences of arbitrary
length from the HMM. Your method should take sequence length, and model
parameters (a and e) as arguments. Simulate and print out a state and symbol
sequence of length 200.
(c) [3 mark] Write a method to calculate the natural logarithm of the joint probability
P(x, π). Your method should take x, π, and model parameters as
arguments.
Use your method to calculate P(x, π) for π and x given below and for the
sequences you simulated in Q1b.
π = S,S,H,H,H,T,T,S,S,S,H,T,T,H,H,H,S,S,S,S,S,S
x = B,I,B,B,N,I,N,B,N,I,N,B,I,N,B,I,I,N,B,B,N,N
(d) [5 marks] Implement the forward algorithm for HMMs to calculate the natural
logarithm of the probability P(x). Your method should take x as an argument.
Note that we don’t model the end state here.
Use your method to calculate log(P(x)) for π and x given in Q1c and for the
sequences you simulated in Q1b.
How does P(x) compare to P(x, π) for the examples you calculated? Does
this relationship hold in general? Explain your answer.
22. [16 marks total] In this question you will write a method that simulates random
trees, simulates sequences using a mutation process on these trees, calculate a
distance matrix from the simulated sequences and then, using existing code, reconstruct
 the tree from this distance matrix.
(a) [5 marks] Write a method that simulates trees according to the Yule model
(described below) with takes as input the number of leaves, n, and the branching
 parameter, λ. Use the provided Python classes.
The Yule model is a branching process that suggests a method of constructing
trees with n leaves. From each leaf, start a lineage going back in time. Each
lineage coalesces with others at rate λ. When there k lineages, the total rate
of coalescence in the tree is kλ. Thus, we can generate a Yule tree with n
leaves as follows:
Set k = n,t = 0.
Make n leaf nodes with time t and labeled from 1 to n. This is the set of
available nodes.
While k > 1, iterate:
Generate a time tk ∼ Exp (kλ). Set t = t + tk.
Make a new node, m, with height t and choose two nodes, i and j,
uniformly at random from the set of available nodes. Make i and j
the child nodes of m.
Add m to the set of available nodes and remove i and j from this set.
Set k = k-1.
Simulate 1000 trees with λ = 0.5 and n = 10 and check that the mean height
of the trees (that is, the time of the root node) agrees with the theoretical
mean of 3.86.
Use the provided plot tree method to include a picture of a simulated tree
with 10 leaves and λ = 0.5 in your report. To embed the plot in your report,
include in the ffrst cell of your notebook the command %matplotlib inline
(b) [5 marks] The Jukes-Cantor model of DNA sequence evolution is simple:
each site mutates at rate µ and when a mutation occurs, a new base is chosen
uniformly at random from the four possible bases, {A, C, G, T}. If we ignore
mutations from base X to base X, the mutation rate is
3
4
µ. All sites mutate
independently of each other. A sequence that has evolved over time according
to the Jukes-Cantor model has each base equally likely to occur at each site.
The method mutate is provided to simulate the mutation process.
Write a method to simulate sequences down a simulated tree according to the
Jukes-Cantor model.
Your method should take a tree with n leaves, sequence length L, and a
mutation rate µ. It should return either a matrix of sequences corresponding
to nodes in the tree or the tree with sequences stored at the nodes.
3Your method should generate a uniform random sequence of length L at the
root node and recursively mutate it down the branches of the tree, using the
node heights to calculate branch length.
In your report, include a simulated tree with n = 10 and λ = 0.5 and a set
of sequences of length L = 20 and mutation parameter µ = 0.5 simulated on
that tree.
(c) [3 marks] Write a method to calculate the Jukes-Cantor distance matrix, d,
from a set of sequences, where dij is the distance between the ith and the
jth sequences. Recall that the Jukes-Cantor distance for sequences x and y
is deffned by
where fxy is the fraction of differing sites between x and y. Since we will be
dealing with short sequences, use the following deffnition of fxy so that the
distances are well-deffned:
fxy = min
where Dxy is the number of differing sites between x and y and L is the length
of x.
Include a simulated set of sequences of length L = 20 from the tree leaves and
corresponding distance matrix in your report for a tree with n = 10, λ = 0.5
and mutation parameter µ = 0.5.
(d) [3 marks] Now simulate a tree with n = 10 and λ = 0.5 and on that tree,
simulate three sets of sequences with lengths L = 20, L = 50 and L = 200,
respectively, with ffxed µ = 0.1. For each simulated set of sequences, calculate
the distance matrix and print it out.
Then reconstruct the tree using the provided compute upgma tree method.
Use the plot tree method to include a plot of the original tree and a plot of
the reconstructed tree for each distance matrix.
Comment on the quality of the reconstructions and the effect that increasing
the sequence length has on the accuracy of the reconstruction.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp










 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫CS373 COIN、代做Python設(shè)計(jì)程序
  • 下一篇:CSSE7030代做、代寫Python程序設(shè)計(jì)
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士1號線
    合肥機(jī)場巴士1號線
  • 短信驗(yàn)證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                日韩不卡一区二区三区| 在线不卡中文字幕| 91香蕉视频黄| 亚洲一区在线电影| 久久毛片高清国产| 色狠狠综合天天综合综合| 青青草精品视频| 亚洲色图一区二区三区| 精品剧情在线观看| 欧美午夜不卡视频| 99久久国产综合精品女不卡| 蜜臀精品久久久久久蜜臀 | 欧洲色大大久久| 日韩成人精品在线观看| 一区二区高清在线| 亚洲视频小说图片| 国产日韩亚洲欧美综合| 精品美女在线观看| 日韩一区二区三区电影在线观看 | 色综合视频在线观看| 婷婷开心激情综合| 日韩精品乱码av一区二区| 天天操天天综合网| 蜜桃av噜噜一区二区三区小说| 久久99精品久久久久久国产越南 | 最近中文字幕一区二区三区| 欧美一区二区播放| 精品久久国产老人久久综合| 色系网站成人免费| 在线观看亚洲精品| 欧美精品免费视频| 久久影院视频免费| 亚洲婷婷综合久久一本伊一区| 国产v日产∨综合v精品视频| 亚洲超碰精品一区二区| 久久精品国产免费| 亚洲超丰满肉感bbw| 国产综合色精品一区二区三区| 精品国产不卡一区二区三区| 91精品国产入口| 国产精品毛片无遮挡高清| 一级精品视频在线观看宜春院 | 日韩女优av电影在线观看| 26uuu久久天堂性欧美| 综合欧美一区二区三区| 亚洲一区二区三区中文字幕| 成人免费一区二区三区在线观看| 欧美肥胖老妇做爰| 亚洲国产精品二十页| 日本麻豆一区二区三区视频| 国产麻豆精品视频| 欧美肥大bbwbbw高潮| 亚洲免费在线看| 色噜噜狠狠一区二区三区果冻| 日本在线不卡视频| 欧美亚男人的天堂| 亚洲va在线va天堂| 欧美性生交片4| 亚洲成人动漫精品| 91精品国产色综合久久ai换脸| 成人黄色一级视频| 中文字幕精品—区二区四季| 日本亚洲欧美天堂免费| 欧美一区二区三区免费| 精品中文av资源站在线观看| 成人免费视频一区二区| 欧美性色黄大片手机版| 精品乱码亚洲一区二区不卡| 亚洲成人激情自拍| 欧美一区二区二区| 国产98色在线|日韩| 最新中文字幕一区二区三区 | 久久久美女毛片| 香蕉影视欧美成人| 日韩你懂的在线观看| 国产精品一级二级三级| 亚洲视频小说图片| 精品久久久久一区| 在线亚洲一区二区| 1区2区3区欧美| 欧美电影免费观看高清完整版在| 国产精品网曝门| 91麻豆精东视频| 老司机一区二区| 一区二区三区在线不卡| 精品久久久久一区| 欧美日产国产精品| 丰满少妇在线播放bd日韩电影| 色噜噜久久综合| 久久丁香综合五月国产三级网站| 亚洲第一福利视频在线| 欧美日韩一区二区三区在线| 国产真实精品久久二三区| 亚洲一区二区四区蜜桃| 丝袜美腿成人在线| 国产白丝精品91爽爽久久| 成人美女在线观看| 欧美久久久久久久久久| 精品国产伦一区二区三区观看方式| 日本不卡中文字幕| 国产一区二区三区精品视频| 成人开心网精品视频| 欧美三级蜜桃2在线观看| 精品国产伦一区二区三区免费 | 日韩中文字幕av电影| 久久97超碰国产精品超碰| 不卡一区二区在线| 日韩一区二区在线免费观看| 中文字幕一区二区三区四区不卡| caoporn国产精品| 91久久精品国产91性色tv| 国产亚洲一区二区在线观看| 亚洲成人在线观看视频| 波多野结衣中文一区| 精品国产一区二区三区久久影院| 欧美性xxxxxx少妇| 亚洲精品五月天| 91网站在线播放| 精品乱人伦一区二区三区| 一区二区三区成人| 91激情在线视频| 亚洲在线观看免费视频| 色先锋aa成人| 樱桃视频在线观看一区| www.久久久久久久久| 国产精品美女视频| 色美美综合视频| 五月天欧美精品| 精品国产精品网麻豆系列| 国产精品一区二区不卡| 欧美经典一区二区三区| 成人禁用看黄a在线| 亚洲男人天堂av网| 3d成人h动漫网站入口| 国产麻豆精品一区二区| 亚洲色图视频网| 欧美一二三在线| 成人av网站免费| 日韩av一级电影| 亚洲精品国产第一综合99久久| 一区二区三区国产精华| 日韩午夜精品电影| 一本一道波多野结衣一区二区| 99久精品国产| 日韩国产在线观看| 亚洲四区在线观看| 国产日韩欧美一区二区三区乱码| 中文字幕在线一区| 欧美一级高清片| 91在线视频免费观看| 激情综合网天天干| 麻豆国产欧美日韩综合精品二区| www.欧美日韩| 美女视频黄频大全不卡视频在线播放| 成人久久视频在线观看| 免费美女久久99| 日本va欧美va欧美va精品| 亚洲猫色日本管| 亚洲一区二区在线免费观看视频| 日韩国产在线观看一区| 欧美一级淫片007| 宅男噜噜噜66一区二区66| 欧美系列亚洲系列| 色久综合一二码| 日韩无一区二区| 精品少妇一区二区三区在线播放| 亚洲精品美腿丝袜| 亚洲嫩草精品久久| 日韩成人免费在线| 麻豆精品视频在线观看| 国产精品1区2区| 国产成人精品亚洲777人妖| 国产v综合v亚洲欧| 在线观看亚洲一区| 日韩视频永久免费| 国产婷婷精品av在线| 亚洲私人黄色宅男| 午夜精品福利视频网站| 麻豆精品一区二区| 91小视频免费看| www国产精品av| 亚洲综合一区二区三区| 久久精品国产999大香线蕉| av在线不卡电影| 日韩一卡二卡三卡| 亚洲综合成人在线视频| 国产成人精品免费看| 欧美午夜寂寞影院| 国产精品高清亚洲| 久久99国产精品麻豆| 91在线精品一区二区| 欧美精品一区二区三| 亚洲成av人片在线| 欧美在线free| 一区二区三区精品久久久| 国产91精品一区二区麻豆网站| 日本sm残虐另类| 欧美色视频在线| 怡红院av一区二区三区| 成人手机在线视频|