合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        MA214編程代做、代寫Python/C++程序語言

        時間:2024-07-12  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        MA214 Algorithms and Data Structures
        Exercises 10

        (Maximum flows and bipartite matching)

        Exercise 10.1. Multiple-source, multiple-sink maximum flow problem                 3 pts

        A maximum-flow problem may have several sources and sinks, rather than just one of each. For example, a company might actually have a set of M factories {s1, . . . ,sM} and a set of N warehouses {t1, . . . , tN}, between which it wants to send goods. A possible such network is shown below.

        (a) Extend the flow properties and definitions to the multiple-source, multiple-sink version of the problem.

        (b) Describe how to solve the multiple-source, multiple sink version of the prob-lem by “reducing” it to the single-source, single-sink problem. That is, describe how to construct a single-source, single-sink flow network from a multiple-source, multiple-sink network so that a maximum flow in the former corresponds to a maximum flow in the latter, and vice versa.

        (c) What is the time complexity of the algorithm proposed in the previous part?

        Exercise 10.2. Maximum flow and bipartite matching 4 pts

        An undirected graph G = (V, E) is bipartite if V can be partitioned into L and R = V ? L such that all edges run between L and R. A matching in G is a subset of edges M ? E such that for all vertices v ∈ V, at most one edge of M is incident with v. A maximum matching is a matching of maximum cardinality among all matchings of G.

        Given a bipartite undirected graph G = (V, E), we can find a maximum matching of G by using flows as follows: We construct a flow network G′ = (V′, E′) with V′ = V ∪ {s, t}, source s and target t,

        E′ = {(s, ?): ? ∈ L} ∪ {(r, t): r ∈ R} ∪ {(?,r): (?,r) ∈ G, ? ∈ L,r ∈ R} ,

        and capacity 1 for each edge in E′. An integer-valued flow in G′ is a flow f such that f(u, v) is an integer for each edge (u, v) of G′. That is, in our scenario here, we have f(u, v) ∈ {0, 1}. A maximum flow f in G′ that is an integer-valued flow then gives a maximum matching M in G by including in M all edges (?,r) with ? ∈ L and r ∈ R such that f(?,r) = 1. We can find such flow by using the Edmonds–Karp algorithm.

        Now, consider the following instance G = (V, E) of the maximum bipartite matching problem. Vertices on the left are in L, vertices on the right are in R = V ? L.

        (a) List all maximum matchings in this instance of the maximum bipartite matching problem.

        (b) Use the construction described above to obtain a flow network for this instance of the matching problem.

        (c) Pick any maximum matching found in (a), and give the corresponding flow in the flow network described in (b).

        (d) Give all minimum cuts in the flow network constructed in (b). What is the capacity of each of these cuts? What does this tell you about the maximum flow in the flow network, and the cardinality of any maximum matching?

        (e) Use the Edmonds–Karp algorithm on the flow network found in (b) to compute a maximum flow. Break ties among equal length augmenting paths lexicographi-cally. So any path that starts with u1 should be preferred over any path that starts with u3. Likewise, any path that starts with u2, v1 should be preferred over any path u2, v4. Re-draw the flow network and the residual network after each up-date.

        Exercise 10.3. Integer-valued flows and maximum matching                 3 pts

        The setup in this exercise is the same as in the previous exercise. We will prove that, as claimed in the previous exercise, there is a one-to-one correspondence between integer-valued flows in the flow network G′ = (V′, E′) and matchings in the undirected bipar-tite graph G = (V, E).

        (a) Show that if there is an integer-valued flow f of value |f| in G′, then there is a matching M in G of cardinality |M| = |f|.

        (b) Show that if there is a matching M in G of cardinality |M|, then there is an integer-valued flow f in G′ of value |f| = |M|.

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




         

        掃一掃在手機打開當前頁
      1. 上一篇:美國簽證能入境菲律賓嗎 可以停留多久呢
      2. 下一篇:申請菲律賓電子簽證所需的材料(辦理流程)
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網
        菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
      4. 上海廠房出租 短信驗證碼 酒店vi設計

        主站蜘蛛池模板: 久久一区二区三区99| 国产综合精品一区二区三区| 色妞AV永久一区二区国产AV| 日韩人妻精品一区二区三区视频| 麻豆一区二区三区蜜桃免费| 精品无人区一区二区三区在线| 天码av无码一区二区三区四区| 精品无码一区二区三区在线| 亚洲AV成人一区二区三区AV | 亚洲一区二区视频在线观看| 一区二区三区精密机械| 久久久无码一区二区三区| 国产在线视频一区二区三区98| 色视频综合无码一区二区三区| 国产精品亚洲一区二区在线观看| 国产短视频精品一区二区三区| 一区二区视频在线观看| 无码人妻精品一区二区三区99仓本 | 日韩精品乱码AV一区二区| 国产伦理一区二区| 国产丝袜视频一区二区三区| 日本高清成本人视频一区| 亚洲色精品aⅴ一区区三区| 国产一区二区视频在线观看 | 国产激情一区二区三区小说 | 亚洲av无码一区二区三区观看| 亚洲AV无码第一区二区三区| 无码人妻一区二区三区在线| 亚洲国产精品一区二区久久| 亚洲视频一区调教| 99久久无码一区人妻a黑| 成人免费观看一区二区| 精品人妻无码一区二区色欲产成人 | 国产伦精品一区二区三区视频猫咪 | 中文字幕日韩一区二区三区不| 国产99精品一区二区三区免费 | 九九无码人妻一区二区三区| 国产成人精品亚洲一区| 精品国产一区二区三区2021| 国产一区二区电影| 亚洲一区欧洲一区|