合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        INT 404代做、代寫Matlab程序設(shè)計
        INT 404代做、代寫Matlab程序設(shè)計

        時間:2024-10-21  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



        Lab 1 – INT 404: Image and Video Processing
        Start Date: 2024-10-09 Deadline: 2023-10-23
        15% of the final marks
        Late Submission Policy: 5% of the total marks available for the assessment shall be deducted from the assessment mark for each working day after the submission date, up to a maximum of five working days.
        Objectives:
        ** Introducing the image processing capabilities of Matlab and its Image Processing Toolbox.
        2- Learn to read and display different images.
        3- Learn basic image processing steps.
        4- Master different image enhancement techniques
        Download:
        Download the files of lab**Material.zip from the Learning Mall, unzip the file into a folder lab** Material, which contains “lenna512_low_dynamic_range.bmp”and “lenna512.bmp”.

        Tasks:
        1. Task1: PSNR (5’):
        Write a function to measure the Peak Signal to Noise Ratio (PSNR) between two gray images in dB. For the peak value use 255. 255^2
        T h e P S N R i s g i v 𝑃𝑃 𝑃𝑃𝑃𝑃 𝑃𝑃 𝑃𝑃 ( 𝑑𝑑 𝑑𝑑 ) = 1 0 𝑙𝑙 𝑙𝑙 𝑙𝑙 1 0 ( 𝑚𝑚 𝑚𝑚 𝑚𝑚 ) Where mse is the mean square error, and it is evaluated as:
         12 𝑚𝑚𝑚𝑚𝑚𝑚 =     𝑖𝑖𝑚𝑚(w**3;w**3;𝑖𝑖, 𝑐𝑐𝑖𝑖) − 𝑖𝑖𝑚𝑚2(w**3;w**3;𝑖𝑖, 𝑐𝑐𝑖𝑖) 
        ∀w**3;w**3;𝑐𝑐 ∀𝑐𝑐𝑐𝑐
        2. Task 2 (37’)
        In this task, we use the monochrome image Lenna (i.e., lenna512.bmp ) to do the following
        sub tasks, and let’s call the original image Lenna as I0.
        (a) I0 -> down-sampling to I1 with 1/2 size of I0 (both horizontally and vertically) using mean value. First, describe your algorithm and implement it by yourself. Then, display it and compare to the original image. Finally, explain your founding in the report; (10’)
        (b) I**> up-sampling to I1’ with the same size of I0 using nearest neighbor interpolation. First, describe your algorithm and implement it by yourself. Then, display it and compare to the original image. Finally, explain your founding in the report. (12’)
        (c) First,calculatethePSNRbetweentheoriginalimageI0andtheup-sampledimages,i.e., nearest, bilinear, and bicubic, respectively. Then, describe the algorithm of bilinear. Finally, Compare the results of different interpolation methods and Explain your founding in the report. (15’) (Note: for the bilinear and bicubic interpolation, you can use the matlab function directly).
        Image nearest bilinear bicubic PSNR (dB)
        Task 3 (26’)
        Import the image “lenna512_low_dynamic_range.bmp” as im_ldr, then finish the following sub-tasks:
        (1) Write a function to generate a piece-wise linear mapping transform to enhance the contrast of im_ldr; Verify the effectiveness of several mapping transform functions by
                    3.

        evaluating the PSNR with respect to the reference image, and show all enhanced images;
        Identify the best intensity mapping function you obtained. (10’)
        (2) Briefly describe the technique of histogram equalization; Use this technique to enhance
        4.
        the contrast of the low quality image im_ldr; Display the obtained image and show its histogram in the report; Compare the current result with the best intensity mapping function in (1), and explain your finding. (16’)
        Task 4 (**’)
        In this task, we use the monochrome image Lenna (i.e., lenna512.bmp ) to do the following sub tasks, and let’s call this reference image Lenna as im.
        a) Add Gaussian white noise with zero mean and variance 16 to the image im and display the noisy image. Name it as im_wn. Please write one function to generate this image instead of calling matlab function directly. (6’)
        b) Describe the technique of average filter and weighted average filter with a 3X3 window, respectively. Then implement both of them by yourself and use the same template in the slides. Finally, compute the PSNR in the following table and display all filtered images and compare them to the original image. You can use add one boundary with the same as its neighboring pixel values (i.e., nearest neighbor padding). (10’)
        Method Average filter Weighted average filter PSNR (dB)
        c) Describe the technique of Image Averaging, and explain why it can remove noise. Use this technique to remove the noise of im_wn, e.g., average 10 images to get im_wn10, average 100 images to get im_wn100, and average 1000 images to get im_wn1000. You need to implement this by yourself.
        Display these three images and Evaluate the PSNR of these three images with respect to the reference image im.
        Comment which one is better by comparing to the mean. (16’)
        im_wn10 im_wn100 im_wn1000
                 Image PSNR (dB)
                    
        Lab Report
        Write a short report which should contain a concise description of your results and observations. Include listings of the Matlab scripts that you have written. Describe each of the images that you were asked to display.
        Answer each question completely:
        – Do not attach the code at the end of the report, just put the useful code under each question
        – The results maybe contain some figures, please add some index and title of each figure Report format: Single column; Fond size: #12; Page number: no more than 15;
        Submission before 2024-10-23.
        – Electrical version to LM with a rar (ZIP) of all files
        • Rar file name: INT404-Lab**Name-studentID.rar
        • One file with same file name of Rar File: Report ( with studentID, name, Lab title on the
        homepage)
        • One folder: codes and other materials. (I can run it directly)
        Marking scheme
        80%-100% Essentially complete and correct work.
        60%-79% Shows understanding, but contains a small number of errors or gaps.
        40%-59% Clear evidence of a serious attempt at the work, showing some understanding, but with important gaps.
        20%-39% Scrappy work, bare evidence of understanding or significant work omitted. <20% No understanding or little real attempt made.
        This page last modified on 2024-10-08 8:53 AM

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




         

        掃一掃在手機(jī)打開當(dāng)前頁
      1. 上一篇:代寫CS 551、代做C/C++編程語言
      2. 下一篇:代做3DA3 C02、Java/python編程代寫
      3. 無相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
        急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
        出評 開團(tuán)工具
        出評 開團(tuán)工具
        挖掘機(jī)濾芯提升發(fā)動機(jī)性能
        挖掘機(jī)濾芯提升發(fā)動機(jī)性能
        海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機(jī)場巴士4號線
        合肥機(jī)場巴士4號線
        合肥機(jī)場巴士3號線
        合肥機(jī)場巴士3號線
        合肥機(jī)場巴士2號線
        合肥機(jī)場巴士2號線
        合肥機(jī)場巴士1號線
        合肥機(jī)場巴士1號線
      4. 短信驗(yàn)證碼 酒店vi設(shè)計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

        關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 一区二区国产在线播放| 亚洲一区电影在线观看| 精品视频无码一区二区三区| 国产精品亚洲一区二区三区久久 | 制服美女视频一区| 一区二区三区日韩精品| 日本美女一区二区三区| 国产成人久久一区二区不卡三区 | 日韩在线观看一区二区三区| 少妇激情AV一区二区三区| 东京热无码一区二区三区av| 激情综合丝袜美女一区二区| 波多野结衣av高清一区二区三区| 99精品国产一区二区三区2021| 久久久久成人精品一区二区| 日韩精品无码一区二区视频| 乱人伦一区二区三区| 无码人妻精品一区二区三区99不卡 | 亚洲丰满熟女一区二区v| 无码囯产精品一区二区免费 | 久久久久久一区国产精品| 国产高清视频一区二区| 国产一区视频在线免费观看| 国产综合精品一区二区| 国产成人无码aa精品一区| 国产一区高清视频| 波多野结衣高清一区二区三区| 中文字幕亚洲一区| 国产成人精品视频一区二区不卡| 波多野结衣免费一区视频| 日韩一区二区久久久久久| 老熟妇仑乱视频一区二区| 一区二区三区在线|欧| 中文字幕精品一区二区2021年| 日韩一区二区a片免费观看| 国产成人一区二区三区电影网站| 国产成人精品无码一区二区老年人| 无码欧精品亚洲日韩一区夜夜嗨| 久久免费视频一区| 精品无码一区二区三区在线| 免费高清在线影片一区|