99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代做3DA3 C02、Java/python編程代寫
代做3DA3 C02、Java/python編程代寫

時間:2024-10-21  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



Assignment 1, Commerce 3DA3 C02 - Predictive Data Analytics
To complete this assignment, please create a Jupyter notebook. The code in your jupyter notebook should provide answers to questions asked in the assignment. Please submit the assignment by uploading the file(s) into the "Assignment 1" folder on Avenue to Learn. You can find this folder under "Assessments>Assignments" on the course page. The deadline for submission is 11:59PM on Monday Oct. 21.
Background
In the past decade, we witnessed the rise of online grocery shopping. With the convenience of ordering groceries from the comfort of home, more people are turning to digital platforms for their everyday needs. This shift has been further fueled by factors such as busy lifestyles, the increasing use of mobile devices, and the covid-19 pandemic, which underscored the importance of contactless shopping.
For online grocery platforms, conducting data analysis on sales records is critical for understanding customer behavior, enhancing the overall shopping experience, and make data-driven decisions that lead to higher customer satisfaction and profitability.
Data: We will make use of two datasets from the transaction records of an online grocery delivery platform, stored in the files orders.csv (click to download) and order_products.csv (click to download).
The dataset in orders.csv includes the following columns:
order_id: This is the unique identifier of every customer order
customer_id: This is the unique identifier of every customer who placed the order order_dow: This indicates the day of the week, on which the order took place. 0 stands for Sunday, **5 indiates Monday-Friday, and 6 indicates a Saturday. order_hour_of_day: This indicates during which hour the order took place; for example, 14 indicates that the order was placed between 14:00 and 14:59. days_since_prior_order: This indicates how many days have passed since the customer's last order
coupon_use: This shows if the customer used a coupon to (partially) pay for the order
The dataset in order_products.csv records which products are purchased in an order. It

 includes the following columns:
order_id: This is the order idenfitier (same as in order.csv).
product_id: This is the identifier of a product that is purchased in the corresponding order.
quantity: This is the quantity of the product purchased in the corresponding order. unit_price: This is the unit price (in dollars) of the product purchased in the corresponding order.
customer_id: This is the identifier of the customer who purchased the product.
Please note that order_id in order_products.csv does not need to be unique. If two rows in order_products.csv share the same order_id, it means that in the same order, the products in those two rows are both purchased.
For example, suppose that the following row exists in order.csv:
order_id customer_id order_dow order_hour_of_day days_since_prior_order coupon_u
O1234 C6217 2 10 11 yes and the following two rows exist in order_products.csv:
         order_id
O1234
O1234
product_id quantity
P0217 1
P0219 2
unit price customer_id
9.99 C6217
19.99 C6217
         then we know that in the same order (order_id O1234), 1 unit of product P0217 and 2 units of product P0219 are purchased. And this order O1234 is the same order as the order O1234 in order.csv.
Imagine that you are a data analyst at the grocery delivery platform. Based on the datasets, please answer the following questions/tasks.
Questions 0.
In the first cell of your Jupyter notebook, please create the following as markdown. Add your first and last name, and your Student ID.
se

  Important: For the remaining questions, please make sure to create a markdown cell before you answer each question and in it indicate the question number, e.g., Question 1, Question 2, etc.
For each question, you should use one or more code cells to present your codes. Please make sure that you run each cell and display all the requested results. Please also ensure that you will use markdown cells to provide necessary explanations of your codes and results.
The Jupyter notebook should be a easy-to-read report that presents your analysis and results. The grading will be based on both the correctness of your coding and the readability of your notebook.
Question 1.
Import the two .csv files and assign them to a dataframe called df_orders and df_order_products , respectively. Then,
use a line of codes to review the first few rows of the dataframes. The result should be clearly displayed in the notebook after you run the code cells.
get the structures of the dataframes (number of rows, column types, etc.) using the
info() function. Review the first few rows of the dataframe.
In a markdown cell,explain the results returned by this function as comprehensive as you
can..
Question 2.
For the DataFrame df_orders loaded from orders.csv, perform the following steps in the given order.
1. Find how many missing value each column contains.
2. For any missing value in the column   , replace it with 'unknown_order'
3. For any missing value in the column   , replace it with
     'unknown_customer'
order_id
customer_id

 4. For any missing value in the column   , replace it with the mean value of the column
5. After completing the above steps, repeat the codes in Step 1 to check again the number of missing values in each column
6. For any remaining missing values, drop all rows containing a missing value
Question 3.
The grocery delivery platform is interested in assessing if offering coupons will increase customers' purchase frequency. To that end, let us again make use of the DataFrame
df_orders (loaded from orders.csv) to perform the following tasks.
1. Select all rows in df_orders where use of a coupon is yes , and assign those rows as a new DataFrame named df_orders_coupon .
2. Calculate the mean value of 'days_since_prior_order' in df_orders_coupon .
3. Select all rows in where use of a coupon is no , and assign those rows
as a new DataFrame named .
4. Calculate the mean value of 'days_since_prior_order' in df_orders_no_coupon .
Based on your findings of the above steps, answer the following question in a markdown cell:
Is the use of coupon associated with higher/lower order frequency? Please briefly explain your answer in the markdown cell.
Questions 4.
The platform is also interested in measuring the total number of orders received on each day of the week. To do this, they would like you to complete the following tasks.
Divide the order id's in the 'order_id' column of the DataFrame df_orders (loaded from orders.csv) into groups, based on the day of the week ('order_dow') when the order is placed. The result should be a Groupby object.
Construct and display the content of a pandas Series, which should show the total number of orders for each day of the week.
Question 5.
As observed, each row of the data in order_products.csv is the sales information of a product in a certain order. The information includes the per-unit price and number of units ordered, but it does not directly provide the revenue.
     df_orders
 df_orders_no_coupon
   days_since_prior_order

 Let us now create a new column named 'revenue' in the DataFrame df_order_products constructed from order_products.csv. For each row, the
column should contain the corresponding revenue, calcuated as 'quantity'×'unit price'. See the following two-row example for a demonstration.
order_id product_id quantity unit_price customer_id revenue
O1234 P0217 1 9.99 C6217 9.99
O1234 P0219 2 19.99 C621**9.98
After you have added the new column, further complete the following tasks:
Display the first few rows of the updated df_order_products DataFrame. Calculate the total revenue by summing up revenues in each row.
Question 6
From time to time, there will be customers who would like to review their purchase record. To do that, they will need to supply their customer id.
Suppose a customer with the id '0421MWMT' just contacted Customer Service and would like to see all their purchases. Perform the following tasks for the customer.
Select all rows related to this customer's purchases in the DataFrame df_order_products (loaded from order_products.csv), and assign them to a
new DataFrame named 'df_cust_inquiry'. Display the content of this DataFrame. Calculate the customer's total purchase in dollar amount.
              
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:INT 404代做、代寫Matlab程序設(shè)計(jì)
  • 下一篇:代寫CS 551、代做C/C++編程語言
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士1號線
    合肥機(jī)場巴士1號線
  • 短信驗(yàn)證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产精品初高中害羞小美女文| 国产精品国产馆在线真实露脸| 久久蜜臀精品av| 日本伊人色综合网| 欧美一级xxx| 香蕉久久一区二区不卡无毒影院 | 久99久精品视频免费观看| 精品少妇一区二区三区视频免付费 | 99久久久精品免费观看国产蜜| 国产精品国产三级国产aⅴ无密码| 成人动漫精品一区二区| 亚洲同性同志一二三专区| 欧美日韩精品欧美日韩精品一 | 日韩一区二区电影网| 欧美日韩久久一区| 日日骚欧美日韩| 日韩免费视频一区| 成人高清视频免费观看| 亚洲福利视频一区二区| 久久精品人人做人人综合| 日本国产一区二区| 日韩国产一二三区| 中文文精品字幕一区二区| 91成人免费网站| 久久se精品一区精品二区| 亚洲色图20p| 欧美大片国产精品| 91丨porny丨国产入口| 久久精品国产一区二区三| 亚洲少妇中出一区| 欧美videofree性高清杂交| 91农村精品一区二区在线| 日本三级亚洲精品| 亚洲特黄一级片| 精品国产电影一区二区| 欧美亚洲禁片免费| 91亚洲精品久久久蜜桃网站 | 美女视频黄 久久| 日本一区二区三区国色天香| 日韩视频免费观看高清完整版在线观看 | 久久99精品久久久| 亚洲一区二区三区三| 国产亚洲欧美激情| 欧美亚洲综合在线| 国产成a人亚洲| 麻豆精品新av中文字幕| 亚洲欧美另类久久久精品2019| 久久无码av三级| 日韩精品一区二区三区视频播放 | 成人av电影观看| 亚洲h动漫在线| 自拍偷自拍亚洲精品播放| 久久九九久久九九| 欧美高清视频不卡网| 欧美伊人久久大香线蕉综合69| 99久久精品情趣| 国产精品中文欧美| 美女视频黄频大全不卡视频在线播放| 婷婷夜色潮精品综合在线| 国产精品成人免费精品自在线观看| 国产午夜精品一区二区三区四区 | 精品亚洲免费视频| 日本aⅴ免费视频一区二区三区| 日韩黄色小视频| 日韩激情在线观看| 国产一区二区三区综合| 狠狠色综合播放一区二区| 国产精品自拍一区| 成人小视频免费观看| 成人aa视频在线观看| 成人97人人超碰人人99| 色偷偷久久人人79超碰人人澡| a亚洲天堂av| 欧美日韩亚洲国产综合| 色综合天天在线| 欧美在线观看一区| 欧美最新大片在线看 | 久久久五月婷婷| 久久这里只精品最新地址| 国产视频一区二区在线观看| 国产精品视频yy9299一区| 国产精品毛片久久久久久久| 亚洲视频在线观看三级| 亚洲制服欧美中文字幕中文字幕| 亚洲在线视频免费观看| 青草国产精品久久久久久| 狠狠色2019综合网| 99久免费精品视频在线观看| 欧洲日韩一区二区三区| 欧美大片在线观看| 国产精品私房写真福利视频| 亚洲成人av在线电影| 国产精品亚洲第一区在线暖暖韩国| 成人中文字幕合集| 7777精品伊人久久久大香线蕉完整版 | 日产欧产美韩系列久久99| 麻豆中文一区二区| 色婷婷一区二区三区四区| 91精品国产入口| 国产精品大尺度| 视频一区视频二区中文| gogo大胆日本视频一区| 欧美二区在线观看| 亚洲精品日日夜夜| 韩国av一区二区三区四区| 在线视频中文字幕一区二区| 精品国产一区二区三区久久影院| 一区精品在线播放| 亚洲欧美激情小说另类| 国产真实乱子伦精品视频| 色av一区二区| 国产精品电影院| 国产大陆亚洲精品国产| 91精品国产入口| 亚洲一二三区视频在线观看| 91在线免费视频观看| 久久久精品影视| 精品一区二区三区免费| 欧美一区二区三区在线视频 | 国产成a人亚洲| 日韩午夜激情免费电影| 亚洲国产乱码最新视频 | 亚洲超碰精品一区二区| 99热这里都是精品| 自拍偷拍亚洲综合| 不卡一区二区在线| 国产精品日日摸夜夜摸av| 国产一区二区视频在线播放| 精品国产乱码久久| 久久av资源站| 欧美大片日本大片免费观看| 三级在线观看一区二区| 这里只有精品99re| 日本视频中文字幕一区二区三区| 5858s免费视频成人| 亚洲欧美另类图片小说| 欧美色图免费看| 亚洲人成人一区二区在线观看 | 亚洲国产成人porn| 欧美一区二区三区在线观看视频| 亚洲宅男天堂在线观看无病毒| 欧美人伦禁忌dvd放荡欲情| 亚洲国产精品久久久男人的天堂| 欧美日韩在线免费视频| 爽爽淫人综合网网站| 欧美三电影在线| 亚洲1区2区3区视频| 欧美一级淫片007| 久久精品99国产精品| 精品av久久707| 国产精品一二一区| 中文字幕av在线一区二区三区| 成人av电影在线网| 亚洲一区av在线| 精品国产a毛片| www.欧美.com| 亚洲va在线va天堂| 国产亚洲精品bt天堂精选| 成人动漫在线一区| 日韩av一区二区在线影视| 精品日韩99亚洲| 91黄色激情网站| 蜜臀va亚洲va欧美va天堂| 国产精品污网站| 色拍拍在线精品视频8848| 日韩精品1区2区3区| 精品区一区二区| 欧美色图免费看| 国内精品在线播放| 一区二区不卡在线播放| 欧美日韩国产电影| 成人亚洲一区二区一| 亚洲精品国产第一综合99久久| 26uuu亚洲综合色| 91黄色在线观看| 国产一区二区不卡在线 | 亚洲欧美一区二区三区国产精品| 欧美成人aa大片| 97se亚洲国产综合自在线不卡| 九九精品一区二区| 一区二区三区**美女毛片| 国产人久久人人人人爽| 欧美在线观看一区二区| 国产一区福利在线| 亚洲福利一区二区三区| 国产精品久久久久久久蜜臀| 精品免费99久久| 欧美人动与zoxxxx乱| 日本精品一级二级| 国产91对白在线观看九色| 韩国午夜理伦三级不卡影院| 日日欢夜夜爽一区| 亚洲国产精品久久人人爱蜜臀| 亚洲天堂av老司机| 精品国产91久久久久久久妲己| 欧美精品日日鲁夜夜添| 91国产精品成人| 色综合久久88色综合天天免费| 国产乱子伦视频一区二区三区 | 蜜桃视频一区二区三区在线观看|