99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代做3DA3 C02、Java/python編程代寫(xiě)
代做3DA3 C02、Java/python編程代寫(xiě)

時(shí)間:2024-10-21  來(lái)源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



Assignment 1, Commerce 3DA3 C02 - Predictive Data Analytics
To complete this assignment, please create a Jupyter notebook. The code in your jupyter notebook should provide answers to questions asked in the assignment. Please submit the assignment by uploading the file(s) into the "Assignment 1" folder on Avenue to Learn. You can find this folder under "Assessments>Assignments" on the course page. The deadline for submission is 11:59PM on Monday Oct. 21.
Background
In the past decade, we witnessed the rise of online grocery shopping. With the convenience of ordering groceries from the comfort of home, more people are turning to digital platforms for their everyday needs. This shift has been further fueled by factors such as busy lifestyles, the increasing use of mobile devices, and the covid-19 pandemic, which underscored the importance of contactless shopping.
For online grocery platforms, conducting data analysis on sales records is critical for understanding customer behavior, enhancing the overall shopping experience, and make data-driven decisions that lead to higher customer satisfaction and profitability.
Data: We will make use of two datasets from the transaction records of an online grocery delivery platform, stored in the files orders.csv (click to download) and order_products.csv (click to download).
The dataset in orders.csv includes the following columns:
order_id: This is the unique identifier of every customer order
customer_id: This is the unique identifier of every customer who placed the order order_dow: This indicates the day of the week, on which the order took place. 0 stands for Sunday, **5 indiates Monday-Friday, and 6 indicates a Saturday. order_hour_of_day: This indicates during which hour the order took place; for example, 14 indicates that the order was placed between 14:00 and 14:59. days_since_prior_order: This indicates how many days have passed since the customer's last order
coupon_use: This shows if the customer used a coupon to (partially) pay for the order
The dataset in order_products.csv records which products are purchased in an order. It

 includes the following columns:
order_id: This is the order idenfitier (same as in order.csv).
product_id: This is the identifier of a product that is purchased in the corresponding order.
quantity: This is the quantity of the product purchased in the corresponding order. unit_price: This is the unit price (in dollars) of the product purchased in the corresponding order.
customer_id: This is the identifier of the customer who purchased the product.
Please note that order_id in order_products.csv does not need to be unique. If two rows in order_products.csv share the same order_id, it means that in the same order, the products in those two rows are both purchased.
For example, suppose that the following row exists in order.csv:
order_id customer_id order_dow order_hour_of_day days_since_prior_order coupon_u
O1234 C6217 2 10 11 yes and the following two rows exist in order_products.csv:
         order_id
O1234
O1234
product_id quantity
P0217 1
P0219 2
unit price customer_id
9.99 C6217
19.99 C6217
         then we know that in the same order (order_id O1234), 1 unit of product P0217 and 2 units of product P0219 are purchased. And this order O1234 is the same order as the order O1234 in order.csv.
Imagine that you are a data analyst at the grocery delivery platform. Based on the datasets, please answer the following questions/tasks.
Questions 0.
In the first cell of your Jupyter notebook, please create the following as markdown. Add your first and last name, and your Student ID.
se

  Important: For the remaining questions, please make sure to create a markdown cell before you answer each question and in it indicate the question number, e.g., Question 1, Question 2, etc.
For each question, you should use one or more code cells to present your codes. Please make sure that you run each cell and display all the requested results. Please also ensure that you will use markdown cells to provide necessary explanations of your codes and results.
The Jupyter notebook should be a easy-to-read report that presents your analysis and results. The grading will be based on both the correctness of your coding and the readability of your notebook.
Question 1.
Import the two .csv files and assign them to a dataframe called df_orders and df_order_products , respectively. Then,
use a line of codes to review the first few rows of the dataframes. The result should be clearly displayed in the notebook after you run the code cells.
get the structures of the dataframes (number of rows, column types, etc.) using the
info() function. Review the first few rows of the dataframe.
In a markdown cell,explain the results returned by this function as comprehensive as you
can..
Question 2.
For the DataFrame df_orders loaded from orders.csv, perform the following steps in the given order.
1. Find how many missing value each column contains.
2. For any missing value in the column   , replace it with 'unknown_order'
3. For any missing value in the column   , replace it with
     'unknown_customer'
order_id
customer_id

 4. For any missing value in the column   , replace it with the mean value of the column
5. After completing the above steps, repeat the codes in Step 1 to check again the number of missing values in each column
6. For any remaining missing values, drop all rows containing a missing value
Question 3.
The grocery delivery platform is interested in assessing if offering coupons will increase customers' purchase frequency. To that end, let us again make use of the DataFrame
df_orders (loaded from orders.csv) to perform the following tasks.
1. Select all rows in df_orders where use of a coupon is yes , and assign those rows as a new DataFrame named df_orders_coupon .
2. Calculate the mean value of 'days_since_prior_order' in df_orders_coupon .
3. Select all rows in where use of a coupon is no , and assign those rows
as a new DataFrame named .
4. Calculate the mean value of 'days_since_prior_order' in df_orders_no_coupon .
Based on your findings of the above steps, answer the following question in a markdown cell:
Is the use of coupon associated with higher/lower order frequency? Please briefly explain your answer in the markdown cell.
Questions 4.
The platform is also interested in measuring the total number of orders received on each day of the week. To do this, they would like you to complete the following tasks.
Divide the order id's in the 'order_id' column of the DataFrame df_orders (loaded from orders.csv) into groups, based on the day of the week ('order_dow') when the order is placed. The result should be a Groupby object.
Construct and display the content of a pandas Series, which should show the total number of orders for each day of the week.
Question 5.
As observed, each row of the data in order_products.csv is the sales information of a product in a certain order. The information includes the per-unit price and number of units ordered, but it does not directly provide the revenue.
     df_orders
 df_orders_no_coupon
   days_since_prior_order

 Let us now create a new column named 'revenue' in the DataFrame df_order_products constructed from order_products.csv. For each row, the
column should contain the corresponding revenue, calcuated as 'quantity'×'unit price'. See the following two-row example for a demonstration.
order_id product_id quantity unit_price customer_id revenue
O1234 P0217 1 9.99 C6217 9.99
O1234 P0219 2 19.99 C621**9.98
After you have added the new column, further complete the following tasks:
Display the first few rows of the updated df_order_products DataFrame. Calculate the total revenue by summing up revenues in each row.
Question 6
From time to time, there will be customers who would like to review their purchase record. To do that, they will need to supply their customer id.
Suppose a customer with the id '0421MWMT' just contacted Customer Service and would like to see all their purchases. Perform the following tasks for the customer.
Select all rows related to this customer's purchases in the DataFrame df_order_products (loaded from order_products.csv), and assign them to a
new DataFrame named 'df_cust_inquiry'. Display the content of this DataFrame. Calculate the customer's total purchase in dollar amount.
              
請(qǐng)加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



 

掃一掃在手機(jī)打開(kāi)當(dāng)前頁(yè)
  • 上一篇:INT 404代做、代寫(xiě)Matlab程序設(shè)計(jì)
  • 下一篇:代寫(xiě)CS 551、代做C/C++編程語(yǔ)言
  • 無(wú)相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷(xiāo)助手小象助手多多出評(píng)軟件
    2025年10月份更新拼多多改銷(xiāo)助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開(kāi)團(tuán)工具
    出評(píng) 開(kāi)團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
  • 短信驗(yàn)證碼 trae 豆包網(wǎng)頁(yè)版入口 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                蜜臀av一级做a爰片久久| 国产精品影视在线观看| 日韩一区精品字幕| 欧美剧在线免费观看网站| 亚洲一级片在线观看| 欧美亚洲丝袜传媒另类| 亚洲一区成人在线| 欧美一级黄色录像| 久久99国产精品免费网站| www精品美女久久久tv| 成人小视频免费观看| 亚洲乱码一区二区三区在线观看| 欧美色图12p| 美日韩一区二区| 国产日韩av一区| 欧美性生活一区| 国产在线一区二区| 最新中文字幕一区二区三区 | 99久久精品免费看| 亚洲成在人线在线播放| 精品精品国产高清a毛片牛牛 | 中文字幕一区二区三区在线播放 | 亚洲成a人v欧美综合天堂下载 | 欧美欧美欧美欧美首页| 国产真实乱偷精品视频免| 亚洲精品久久久久久国产精华液| 欧美片网站yy| 99久久精品情趣| 精品一区二区日韩| 亚洲国产综合91精品麻豆| 国产片一区二区三区| 欧美色电影在线| 成人高清免费在线播放| 日韩中文字幕一区二区三区| 国产精品欧美一区二区三区| 日韩一级视频免费观看在线| 一区二区三区丝袜| 国产肉丝袜一区二区| 88在线观看91蜜桃国自产| 91理论电影在线观看| 国产精品99久久久久久宅男| 五月天亚洲精品| 一区二区三区四区av| 国产精品久久午夜| 久久精品亚洲精品国产欧美| 欧美妇女性影城| 欧美色倩网站大全免费| 91麻豆123| 色综合久久久久久久| 成人综合婷婷国产精品久久| 精品亚洲porn| 精品制服美女丁香| 久久99精品久久久久久国产越南| 日本美女一区二区三区| 日本中文在线一区| 肉丝袜脚交视频一区二区| 亚洲制服丝袜av| 婷婷丁香久久五月婷婷| 亚洲午夜免费视频| 五月婷婷综合网| 日韩成人一级片| 久久精品噜噜噜成人88aⅴ| 看国产成人h片视频| 久久99国产精品麻豆| 激情综合网最新| 粉嫩在线一区二区三区视频| 国产精品一区三区| 国产成人综合视频| 91网上在线视频| 欧美日韩国产经典色站一区二区三区| 欧美在线观看一区| 欧美福利视频导航| 久久影院午夜片一区| 欧美激情一区在线观看| 综合久久给合久久狠狠狠97色| 亚洲桃色在线一区| 天天影视色香欲综合网老头| 蜜臀精品一区二区三区在线观看| 免费在线观看一区| 国产高清不卡二三区| 日本道精品一区二区三区 | 欧美情侣在线播放| 欧美一级搡bbbb搡bbbb| 久久久久久亚洲综合影院红桃| 日本一区二区在线不卡| 亚洲欧美一区二区三区国产精品| 国产精品欧美经典| 一区二区三区蜜桃网| 久久精品国产一区二区三区免费看 | 日韩欧美色电影| 欧美经典一区二区| 亚洲自拍偷拍网站| 国产在线精品免费av| aaa国产一区| 3d动漫精品啪啪| 亚洲欧美怡红院| 麻豆精品新av中文字幕| 99精品视频在线免费观看| 在线播放中文一区| 国产精品久久久久久一区二区三区 | 成人一二三区视频| 91麻豆精品国产自产在线| 久久久久国产一区二区三区四区 | 日韩欧美在线综合网| 日韩一区有码在线| 精品一二三四区| 69成人精品免费视频| 亚洲色图视频免费播放| 国产福利一区二区| 久久综合久久鬼色中文字| 日本亚洲电影天堂| 欧美视频中文字幕| 亚洲人亚洲人成电影网站色| 国产在线精品不卡| 日韩午夜电影在线观看| 午夜精品免费在线观看| 欧美日韩综合色| 亚洲一区二区在线免费观看视频| 成人黄色软件下载| 国产欧美日韩在线| 国产二区国产一区在线观看| 精品国产伦一区二区三区观看体验| 亚洲va韩国va欧美va| 欧美亚洲自拍偷拍| 亚洲一区二区四区蜜桃| 欧美性做爰猛烈叫床潮| 亚洲一区国产视频| 精品视频在线免费| 五月天激情综合| 精品视频1区2区3区| 一区二区三区欧美日韩| 99精品在线观看视频| 欧美伦理电影网| 自拍视频在线观看一区二区| 国产很黄免费观看久久| 91丨九色porny丨蝌蚪| 一区二区三区四区在线播放| 国产.欧美.日韩| 欧美国产日韩a欧美在线观看| 丝袜美腿成人在线| 精品99久久久久久| 美女尤物国产一区| 91精品久久久久久久91蜜桃| 一区二区三区不卡视频| 蜜芽一区二区三区| 精品区一区二区| 美女任你摸久久| 日韩一区二区在线观看视频| 视频一区在线视频| 欧美日韩一级黄| 亚洲一二三区在线观看| 色中色一区二区| 亚洲精品日韩一| 日本精品免费观看高清观看| 人人狠狠综合久久亚洲| 日韩欧美综合在线| 国产精品进线69影院| 国产精品一线二线三线| 中文字幕av一区 二区| 国产丝袜在线精品| 丰满放荡岳乱妇91ww| 国产精品伦一区| 69精品人人人人| 国产一区二区福利视频| 国产亚洲va综合人人澡精品| 日韩一级大片在线观看| 极品销魂美女一区二区三区| 久久综合国产精品| 99麻豆久久久国产精品免费| 欧美日韩电影在线| 国产91精品久久久久久久网曝门| 欧美激情在线观看视频免费| 欧美在线视频日韩| 久久99热这里只有精品| 欧美美女一区二区在线观看| 蜜桃视频在线一区| 日本一二三不卡| 欧美影院精品一区| 成人h动漫精品一区二| 一区二区三区丝袜| 日韩欧美成人午夜| 首页国产欧美久久| 一级女性全黄久久生活片免费| 一本大道av伊人久久综合| 玖玖九九国产精品| 亚洲在线一区二区三区| 久久综合色婷婷| 在线观看av不卡| 国产精品白丝jk黑袜喷水| 这里只有精品电影| 国产在线视频一区二区| 一区二区在线免费观看| 日韩精品在线网站| 色婷婷一区二区| 色婷婷亚洲综合| 国产盗摄一区二区| 日本欧美一区二区| 欧美丝袜丝交足nylons图片| 色婷婷亚洲精品| 成人福利视频网站|