99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代做MLE 5217、代寫Python程序設(shè)計(jì)
代做MLE 5217、代寫Python程序設(shè)計(jì)

時(shí)間:2024-10-23  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



Dept. of Materials Science & Engineering NUS
MLE 5217 : Take-Home Assignments
Objectives
Based on the chemical composition of materials build a classiffcation model to distinguish metals and non-metals
(Model 1), and then build a regression model to predict the bandgap of non-metallic compounds (Model 2).
Please use a separate jupyter notebook for each of the models.
Data
The data contains the chemical formula and energy band gaps (in eV) of experimentally measured compounds.
These measurements have been obtained using a number of techniques such as diffuse reffectance, resistivity
measurements, surface photovoltage, photoconduction, and UV-vis measurements. Therefore a given compound
may have more than one measurement value.
Tasks
Model I (30 marks)
Dataset: Classiffcation data.csv
Fit a Support Vector Classiffcation model to separate metals from non-metals in the data. Ensure that you:
• Follow the usual machine learning process.
• Use a suitable composition based feature vector to vectorize the chemical compounds.
• You may use your judgement on how to differentiate between metals & non-metals. As a guide, two possible
options are given below.
Option 1 : for metals Eg = 0, and Non-metals Eg > 0
Option 2: for metals Eg ≤ 0.5, for non-metals Eg > 0.5
• Use suitable metrics to quantify the performance of the classiffer.
• For added advantage you may optimize the hyper-parameters of the Support Vector Classiffer. Note: Optimization
 algorithms can require high processing power, therefore may cause your computer to freeze (Ensure
you have saved all your work before you run such codes). In such a case you may either do a manual
optimization or leave the code without execution.
• Comment on the overall performance of the model.
Model II (30 marks)
Dataset: Regression data.csv
Fit a Regression Equation to the non-metals to predict the bandgap energies based on their chemical composition
• Use a suitable composition based feature vector to vectorize the chemical compounds. You may try multiple
feature vectors and analyse the outcomes.
• You may experiment with different models for regression analysis if required.
• Comment on the overall performance of the model and suggest any short-comings or potential improvements.
September 2024Important : Comments
• Write clear comments in the code so that a user can follow the logic.
• In instances where you have made decisions, justify them.
• In instances where you may have decided to follow a different analysis path (than what is outlined in the
tasks), explain your thinking in the comments.
• Acknowledge (if any) references used at the bottom of the notebook.
Submission
• Ensure that each of the cells of code in the ffnal Jupyter notebooks have been Run for output (Except for
the hyper-parameter optimization if any).
• The two models (I and II) have been entered in two separate notebooks.
• Name the ffles by your name as ”YourName 1.ipynb” and ”YourName 2.ipynb”
• It is your responsibility to Ensure that the correct ffles are being submitted, and the ffle extensions
are in the correct format (.ipynb).
• Submission will be via Canvas, and late submissions will be penalized.
Evaluation
The primary emphasis will be on the depth and thoroughness of your approach to the problem. Key areas of focus
will include:
* Data Exploration: Demonstrating a thorough investigation of the data, exploring different analytical
possibilities, and thoughtfully selecting the best course of action.
* Implementation: Translating your chosen approach into clean and efffcient code.
* Machine Learning Process: Executing the machine learning process correctly and methodically, ensuring
proper data handling, model selection, and evaluation.
* Clarity of Explanation: Providing clear explanations of each step, with logical reasoning for the decisions made.
*Critical Analysis: Identifying any limitations of the approach, suggesting potential improvements, and making
relevant statistical inferences based on the results.
================================================================


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






 

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:代寫ISAD1000、代做Java/Python程序設(shè)計(jì)
  • 下一篇:代寫B(tài)attleship 、代做Game 設(shè)計(jì)程序
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評 開團(tuán)工具
    出評 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士4號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士3號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士2號線
    合肥機(jī)場巴士1號線
    合肥機(jī)場巴士1號線
  • 短信驗(yàn)證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                色婷婷综合五月| 色噜噜狠狠成人网p站| 国产美女精品人人做人人爽| 色呦呦一区二区三区| 欧美国产禁国产网站cc| 国产一区91精品张津瑜| 日韩一级高清毛片| 亚洲一区二区高清| 欧美久久久久久蜜桃| 麻豆成人久久精品二区三区红| 欧美日韩一卡二卡| 日本女优在线视频一区二区| 欧美高清激情brazzers| 国产精品一二三四| 1000部国产精品成人观看| 欧美日韩卡一卡二| 精品一区二区三区不卡 | 最好看的中文字幕久久| 91麻豆国产在线观看| 免费国产亚洲视频| 精品国产乱码久久久久久1区2区 | 日韩欧美一二三| 麻豆成人久久精品二区三区红 | 成人福利在线看| 亚洲一区免费视频| 日韩午夜精品视频| 99精品1区2区| 久久9热精品视频| 午夜天堂影视香蕉久久| 国产精品色一区二区三区| 色网站国产精品| 秋霞影院一区二区| 亚洲人成精品久久久久久| 欧美色成人综合| 理论电影国产精品| 亚洲精品一二三| 国产精品久久久久久久久动漫 | 天堂成人国产精品一区| 国产亚洲精品超碰| 精品国产区一区| 日韩精品一区二区三区在线观看 | 最好看的中文字幕久久| 久久日韩精品一区二区五区| 欧美一级欧美三级| 欧美日韩国产首页| 欧美日韩一区二区三区在线看| 成人sese在线| 国产成人免费在线视频| 欧美猛男男办公室激情| 国产精品国模大尺度视频| 亚洲精品一区二区三区香蕉| 欧美一区二区二区| 欧美一级在线免费| 91网站最新网址| 91在线视频在线| 波多野洁衣一区| 91久久精品一区二区| 97se亚洲国产综合自在线不卡| 国产精品538一区二区在线| 黄色日韩网站视频| 奇米影视在线99精品| 免费久久99精品国产| 国产精品99久久久久久似苏梦涵| 美女在线观看视频一区二区| 日本欧美在线看| 免费成人在线视频观看| 国产一区二区三区美女| 精品在线视频一区| 成人美女视频在线观看18| 99免费精品在线观看| 国产91在线观看丝袜| 成人免费视频免费观看| 成人精品在线视频观看| 不卡视频免费播放| 欧美色综合网站| 成人免费不卡视频| 亚洲高清免费观看高清完整版在线观看| 亚洲卡通欧美制服中文| 天天av天天翘天天综合网色鬼国产| 午夜影院久久久| 精品午夜一区二区三区在线观看| 久久99久久99小草精品免视看| 国产一区二区不卡在线 | 欧美日韩一本到| 日韩亚洲国产中文字幕欧美| 日本一区二区三区国色天香 | 91麻豆精品国产91久久久久久久久| 91麻豆精品国产自产在线| 精品欧美一区二区在线观看| 亚洲丝袜自拍清纯另类| 日日摸夜夜添夜夜添亚洲女人| 国产成人午夜99999| 欧美日韩高清影院| 日韩一区在线看| 激情五月婷婷综合网| 欧美日韩综合在线| 国产精品久久久久影院色老大 | 亚洲第一主播视频| 精东粉嫩av免费一区二区三区| 国产精品77777竹菊影视小说| 欧美性生活久久| 国产精品国产自产拍在线| 久久se这里有精品| 制服视频三区第一页精品| 久久久久国产精品人| 日日夜夜精品视频天天综合网| 不卡免费追剧大全电视剧网站| 欧美精品在欧美一区二区少妇| 久久综合色天天久久综合图片| 午夜精品福利视频网站| 国产成人一级电影| 欧美一区二区三级| 亚洲精品国产无天堂网2021| 国产伦精品一区二区三区视频青涩 | 欧美三级日韩三级国产三级| 国产精品视频观看| 久久精品国产一区二区三区免费看| 99久久精品国产精品久久| 国产色婷婷亚洲99精品小说| 午夜精品久久久久久久久| 日本精品一级二级| 亚洲精品高清视频在线观看| 国产精品一区在线观看你懂的| 欧美精品一二三区| 日本中文一区二区三区| 欧美亚洲国产bt| 亚洲欧美激情视频在线观看一区二区三区 | 亚洲综合免费观看高清在线观看| 丰满亚洲少妇av| 欧美精品一区二区三区在线| 亚洲国产精品视频| 91.com视频| 激情久久五月天| 国产精品毛片高清在线完整版| 精品一区精品二区高清| 久久嫩草精品久久久久| 国产乱码精品一区二区三区av| 精品国产乱码久久久久久1区2区 | 国产精品亚洲综合一区在线观看| 欧美成人性战久久| 国产精品自拍在线| 国产欧美日韩精品一区| 99久久国产综合精品女不卡| 一区二区三区成人| 91麻豆精品国产自产在线| 日韩av高清在线观看| 欧美日韩免费观看一区二区三区 | 国产91精品露脸国语对白| 久久精品一区八戒影视| 高清av一区二区| 亚洲制服丝袜一区| 精品国产91久久久久久久妲己| www亚洲一区| 99视频一区二区三区| 亚洲另类春色国产| 欧美一区永久视频免费观看| 麻豆精品一区二区| 国产精品久久看| 91精品欧美久久久久久动漫 | 国产丝袜欧美中文另类| 欧美在线综合视频| 国产经典欧美精品| 亚洲国产精品久久久久秋霞影院 | 国产中文一区二区三区| 亚洲国产精品传媒在线观看| 97久久超碰精品国产| 亚洲一区二区四区蜜桃| 久久久蜜桃精品| 欧美日韩另类一区| 99精品一区二区三区| 丝袜a∨在线一区二区三区不卡| 欧美mv日韩mv| 欧美图片一区二区三区| 国内久久精品视频| 午夜精品久久久久久久久久久| 国产欧美一区二区精品性色超碰| 色久综合一二码| 国产成人免费高清| 狠狠色丁香婷婷综合久久片| 亚洲国产wwwccc36天堂| 亚洲免费看黄网站| 中文无字幕一区二区三区| 欧美一区二区三区四区高清| 色婷婷亚洲一区二区三区| 国产精品自拍毛片| 韩国女主播成人在线观看| 性久久久久久久| 欧美精品自拍偷拍| 国产a精品视频| 亚洲国产欧美在线| 中文字幕一区二区三区乱码在线| 在线精品视频免费播放| 成人小视频免费在线观看| 久久成人av少妇免费| 日韩精品一二区| 亚洲自拍偷拍网站| 亚洲女性喷水在线观看一区| 久久久久久久久久美女| 欧美不卡一区二区| 欧美日韩中文精品|