合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

        代做MLE 5217、代寫Python程序設計
        代做MLE 5217、代寫Python程序設計

        時間:2024-10-23  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



        Dept. of Materials Science & Engineering NUS
        MLE 5217 : Take-Home Assignments
        Objectives
        Based on the chemical composition of materials build a classiffcation model to distinguish metals and non-metals
        (Model 1), and then build a regression model to predict the bandgap of non-metallic compounds (Model 2).
        Please use a separate jupyter notebook for each of the models.
        Data
        The data contains the chemical formula and energy band gaps (in eV) of experimentally measured compounds.
        These measurements have been obtained using a number of techniques such as diffuse reffectance, resistivity
        measurements, surface photovoltage, photoconduction, and UV-vis measurements. Therefore a given compound
        may have more than one measurement value.
        Tasks
        Model I (30 marks)
        Dataset: Classiffcation data.csv
        Fit a Support Vector Classiffcation model to separate metals from non-metals in the data. Ensure that you:
        • Follow the usual machine learning process.
        • Use a suitable composition based feature vector to vectorize the chemical compounds.
        • You may use your judgement on how to differentiate between metals & non-metals. As a guide, two possible
        options are given below.
        Option 1 : for metals Eg = 0, and Non-metals Eg > 0
        Option 2: for metals Eg ≤ 0.5, for non-metals Eg > 0.5
        • Use suitable metrics to quantify the performance of the classiffer.
        • For added advantage you may optimize the hyper-parameters of the Support Vector Classiffer. Note: Optimization
         algorithms can require high processing power, therefore may cause your computer to freeze (Ensure
        you have saved all your work before you run such codes). In such a case you may either do a manual
        optimization or leave the code without execution.
        • Comment on the overall performance of the model.
        Model II (30 marks)
        Dataset: Regression data.csv
        Fit a Regression Equation to the non-metals to predict the bandgap energies based on their chemical composition
        • Use a suitable composition based feature vector to vectorize the chemical compounds. You may try multiple
        feature vectors and analyse the outcomes.
        • You may experiment with different models for regression analysis if required.
        • Comment on the overall performance of the model and suggest any short-comings or potential improvements.
        September 2024Important : Comments
        • Write clear comments in the code so that a user can follow the logic.
        • In instances where you have made decisions, justify them.
        • In instances where you may have decided to follow a different analysis path (than what is outlined in the
        tasks), explain your thinking in the comments.
        • Acknowledge (if any) references used at the bottom of the notebook.
        Submission
        • Ensure that each of the cells of code in the ffnal Jupyter notebooks have been Run for output (Except for
        the hyper-parameter optimization if any).
        • The two models (I and II) have been entered in two separate notebooks.
        • Name the ffles by your name as ”YourName 1.ipynb” and ”YourName 2.ipynb”
        • It is your responsibility to Ensure that the correct ffles are being submitted, and the ffle extensions
        are in the correct format (.ipynb).
        • Submission will be via Canvas, and late submissions will be penalized.
        Evaluation
        The primary emphasis will be on the depth and thoroughness of your approach to the problem. Key areas of focus
        will include:
        * Data Exploration: Demonstrating a thorough investigation of the data, exploring different analytical
        possibilities, and thoughtfully selecting the best course of action.
        * Implementation: Translating your chosen approach into clean and efffcient code.
        * Machine Learning Process: Executing the machine learning process correctly and methodically, ensuring
        proper data handling, model selection, and evaluation.
        * Clarity of Explanation: Providing clear explanations of each step, with logical reasoning for the decisions made.
        *Critical Analysis: Identifying any limitations of the approach, suggesting potential improvements, and making
        relevant statistical inferences based on the results.
        ================================================================


        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






         

        掃一掃在手機打開當前頁
      1. 上一篇:代寫ISAD1000、代做Java/Python程序設計
      2. 下一篇:代寫B(tài)attleship 、代做Game 設計程序
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發(fā)動機性能
        挖掘機濾芯提升發(fā)動機性能
        戴納斯帝壁掛爐全國售后服務電話24小時官網(wǎng)400(全國服務熱線)
        戴納斯帝壁掛爐全國售后服務電話24小時官網(wǎng)
        菲斯曼壁掛爐全國統(tǒng)一400售后維修服務電話24小時服務熱線
        菲斯曼壁掛爐全國統(tǒng)一400售后維修服務電話2
        美的熱水器售后服務技術咨詢電話全國24小時客服熱線
        美的熱水器售后服務技術咨詢電話全國24小時
        海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
      4. 上海廠房出租 短信驗證碼 酒店vi設計

        主站蜘蛛池模板: 性无码免费一区二区三区在线| 极品少妇一区二区三区四区| 色老板在线视频一区二区| 国产一区二区内射最近更新| 伊人久久一区二区三区无码| 亚洲视频一区调教| 无码av中文一区二区三区桃花岛 | 亚洲日韩国产一区二区三区| 久久福利一区二区| 国产伦精品一区二区三区免.费| 国产精品日韩一区二区三区| 蜜桃无码AV一区二区| 国产一区二区影院| 亚洲av无一区二区三区| 寂寞一区在线观看| 无码欧精品亚洲日韩一区夜夜嗨| 91精品国产一区二区三区左线| 午夜福利国产一区二区| 国产无人区一区二区三区 | 无码人妻AⅤ一区二区三区| 日本精品一区二区久久久| 无码午夜人妻一区二区不卡视频| 亚洲AV色香蕉一区二区| 亚洲一区二区三区影院 | 精品少妇人妻AV一区二区 | 精品无码国产一区二区三区51安| 国产精品区一区二区三在线播放| 亚洲国产av一区二区三区| 精品国产亚洲一区二区在线观看| 国产精品美女一区二区三区 | 亚洲av成人一区二区三区在线播放| 日韩精品无码免费一区二区三区| 91精品一区二区三区久久久久 | 国产在线第一区二区三区| 国产成人一区二区三区电影网站| 国产综合精品一区二区| 国产在线观看一区二区三区精品| 亚洲熟女少妇一区二区| 亚洲综合一区二区国产精品| 亚洲AV日韩AV一区二区三曲| 精品一区二区三区免费视频|