99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫MMME4056、代做MATLAB編程設計
代寫MMME4056、代做MATLAB編程設計

時間:2024-11-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



ESSENTIAL INFORMATION
MODULE CODE MODULE TITLE ASSESSMENT TYPE
MMME4056 Integrated Systems 
Analysis
Simulink and Report
COURSEWORK TITLE WEIGHT (INDICATIVE EFFORT)
MMME4056, ISA 2024, COURSEWORK 30% (Approx. 10-15
hrs)
SUBMISSION DATE SUBMISSION TIME SUBMISSION METHOD
15/11/2024 15:00 Moodle
FEEDBACK DETAILS
Feedback will be provided within 20 working days and will consist of an individual feedback 
form. Please note the marks released on Moodle are raw. If you have made a late submission 
and it is not covered by an EC or an accommodation then the deductions will be made when I 
submit the marks to the board after the exams. 
LEARNING OUTCOMES ASSESSED (IN BOLD)
1. Demonstrate an understanding of the concept of system behaviour and the design of 
experiments for characterising system components. - AHEP4: 2, 6 
2. Critically evaluate and analyse complex dynamic systems behaviour using an 
appropriate numerical or analytical methodology - AHEP4: 1, 2, 3, 6 
3. Evaluate the reliability of the separable system components, coupled system 
components and systems as a whole - AHEP4: 6, 9
SUBMISSION REQUIREMENTS
• This exercise constitutes 30% of the total course mark and is marked out of 100. 
Marks for individual sections are indicated for that section.
• Submit your coursework via MOODLE as a ZIP file. This ZIP-file should contain the 
coursework report itself (as a pdf document) and all files that you used in the CW. 
Please adopt the file-naming suggested in this coursework specification. More details 
about ‘WHAT TO SUBMIT’ can be found in the ASSESSMENT DETAILS.
• It must be possible to open the SIMULINK models submitted using MATLAB release 
R2023 or later. Models presented in different releases that cannot be opened will not
be marked. 
• Your report should not exceed 20 pages including the cover page, references, and 
appendixes.
• Your Coursework should have a front page which will have your name and student 
number.
• Text elements should be typed. Ideally in Arial 11 point.
• Drawings and figures must be made by computer. Drawings and figures may not be 
copied from the internet. In ALL cases they should be appropriately titled and 
captioned. The titles and captions should be clear and legible. 
• You may not discuss the details of your answers with other students. Software checks 
will be made to ensure no copying or plagiarism has occurred.
• Whenever you talk about someone else’s work (including journal papers, books, 
conference papers, technical reports, theses/dissertations, websites, etc.) if necessary,
you must include a reference to the original source of this information. You should use 
the IEEE referencing style for your report. 
MMME4056... Integrated Systems Analysis
COURSEWORK 
SYSTEM DESCRIPTION.
Figure 1 shows a floating wind turbine of spar-buoy type. These floating 
supports for wind turbines achieve stability by having a centre of mass 
below the centre of buoyancy (i.e. the centre of gravity of the displaced 
water).
Spar-buoy floating arrangements are considered by some to be suitable for 
very deep water. They are relatively compliant in “pitch”. That is to say, 
when the wind blows and exerts a downwind thrust force on the rotor of 
the wind turbine, the entire structure rocks backwards a little bit. As the 
structure is moving backwards relative to the oncoming wind, the relative 
wind speed reduces and so a coupling arises between the thrust force, F(t), 
acting on the turbine and the angle of tilt, (t), of the platform. This 
coursework is based on modelling the dynamics of such a floating wind 
turbine platform and applying the methods taught within MMME4056.
The downwind thrust on a wind turbine rotor is not a simple function of 
the wind speed, v(t). Every modern wind turbine has a particular fixed 
rated wind speed vrated. For wind speeds lower than the rated wind speed 
(v(t) < vrated), the turbine controller tries to extract the maximum available 
power from the air and this results in a downwind thrust that is 
proportional to the square of the wind speed, 𝐹(w**5;) = 𝑎 × w**7;(w**5;)
2
. By 
contrast, for wind speeds higher than the rated wind speed (v(t) > vrated), 
the turbine is not able to absorb all of the power available and the 
controller must deliberately spill some power by pitching the blades 
suitably. This results in a different downwind force relationship …
𝐹(w**5;) = 𝑎 × w**7;w**3;𝑎w**5;Ү**;𝑑
3⁄w**7;(w**5;). Figure 2 below shows a typical relationship 
between wind speed and the downwind thrust force acting on a wind turbine. 

q
Fig. 1: A Spar-buoy floating 
 wind turbine support
F
H
Fig. 2: Downwind thrust vs. (relative) wind speed.
vrated
Vcut-out
Wind speed, v →
Downwind thrust, F

OVERALL REQUIREMENTS
The requirement of this coursework is to understand this floating wind turbine as a simple dynamic system, to 
simulate its behaviour as wind-speed changes using SIMULINK and to analyse its behaviour at two different 
equilibrium states using methods taught in the course. 
The submission should be based on what is explicitly asked for in this coursework specification. The primary 
material being marked is a report – although you are asked to submit your SIMULINK models also. It must be 
possible to open the SIMULINK models submitted using the version of MATLAB presently installed on 
University computers. Models prepared in more modern releases will not be marked. 
There are no additional marks for long reports!
FILES PROVIDED TO YOU – AND WHAT THEY DO.
CW_Spec.docx : This file. It contains the coursework specification.
f_diesel.m : A MATLAB function not directly related to this coursework but supplied to help illustrate 
how a SIMULINK model can call a MATLAB function.
f_thrust.m : An MATLAB function that is not complete. You should complete this function by 
modifying each line of code carrying the comment % Modify this line
In some cases, the modification simply involves you inserting the appropriate 
numerical values. In the remaining cases, you should insert the correct formula.
sim_diesel.slx : A SIMULINK model calling the function f_diesel.m. 
As well as showing how to call an Interpreted MATLAB Function in SIMULINK,
this also shows how to transfer data into the MATLAB workspace so that you can 
obtain plots using MATLAB directly.
stud_data.xls : An EXCEL spreadsheet containing one unique row of data for each student. 
Each row contains (in this order) … {vrated, a, J, k, c, H, p, q…}
start_here.m : A MATLAB script. This opens up a SIMULINK model of the diesel engine only, 
(<sim_diesel.slx>) and then runs the model and plots both  and  vs. time. You might
choose to copy and then modify this so as to use it as a way to open and run your own
SIMULINK model. You can run <start_here.m> either by clicking the big green 
arrowhead in the top toolbar of the editor or else by just typing >>start_here 
at the MATLAB command prompt).
WHAT TO SUBMIT
Submit your coursework via MOODLE as a ZIP file. This ZIP-file should contain the coursework report itself (as a 
WORD or PDF document) and all files that you used in the CW. 
IMPORTANT: Please make clear on the first page of the report which student you are by identifying which 
Student ID# (SID# in the spreadsheet) applies to you (a number less than 401). If, for some reason, you do not find 
your name in the spreadsheet, please contact the academic in charge of this coursework to get one. For the 
purposes of your report, please refer to this number as the “SID_No”. (Student Identification number) on your 
report clearly.
 Marks will be deducted if you do not show this information clearly on page 1.
The coursework report should comprise:
• A response to Task 1 (the Table and, at most, 2 further sentences)
• A response to Task 2 (the corrected function, <f_thrust.m>, and four numerical answers)
• A response to Task 3 (maximum 2 pages). This should include an explanation of how you 
applied an algebraic or iterative approach to finding the two equilibrium conditions and a 
description of each equilibrium condition comprising {𝐹9.5,𝜙9.5, w**2;9.5} and {𝐹14,𝜙14, w**2;14}. 
• A response to Task 4 which should comprise
- a legible view of the SIMULINK model (on a single page)
- an explanation in text of how you have applied the initial conditions
- the plot of q(t) vs. t.
• A response to Task 5 (1 page) comprising the SIMULINK Model and a plot of q(t) vs. t.
• A response to Task 6 (<2 pages) containing an explanation of how you determined the state-space 
representation for one condition (you need not repeat this explanation) and how you used the state-space 
representation to determine how q(t) varies with respect to time, t. Also a graph representing q(t) vs. t from 
each of the two calculations (Task 5 and Task 6).
• A response to Task 7 (<2 pages) containing the eigenvalues of the A matrix for the equilibrium condition at 
v(t)  14 and an interpretation of these. Also the graph of q(t) vs. t from the new SIMULINK model and a 
commentary on any connection between the eigenvalues and this graph. 
EQUATIONS DEFINING THE SYSTEM
The following equations define the behaviour of this system. In these equations, a dot above a quantity indicates 
differentiation with respect to time. The angle 𝜙 is measured in radians. 
(1) Define: w**8;(w**5;) ≔ w**7;(w**5;) − 𝐻 × 𝑐w**0;w**4;(𝜙) × 𝜙(w**5;)
(2) If w**8;(w**5;) > w**7;𝑐w**6;w**5;w**0;w**6;w**5;, 𝐹(w**5;) = (𝑎 × w**7;w**3;𝑎w**5;Ү**;𝑑
3⁄w**7;𝑐w**6;w**5;w**0;w**6;w**5;) ∗ exp (−5(w**8;(w**5;) − w**7;𝑐w**6;w**5;w**0;w**6;w**5;))
Otherwise if w**8;(w**5;) ≥ w**7;w**3;𝑎w**5;Ү**;𝑑, 𝐹(w**5;) = 𝑎 × w**7;w**3;𝑎w**5;Ү**;𝑑
3⁄w**8;(w**5;)
Otherwise w**8;(w**5;) < w**7;w**3;𝑎w**5;Ү**;𝑑 and 𝐹(w**5;) = 𝑎 × w**8;(w**5;)
2 × w**4;𝑖𝑔𝑛(w**8;(w**5;))
(3) 𝐽 × 𝜙(w**5;) + 𝑐 × 𝜙(w**5;) + 𝑘 × 𝜙(w**5;) = 𝐹(w**5;) × 𝐻 × 𝑐w**0;w**4;2
(𝜙)
(4) w**2; = 𝐻 × w**4;𝑖𝑛(𝜙)
THE COURSEWORK REQUIREMENT – 7 TASKS.
Task 1. Based on the equations supplied above, insert “Y” (for “yes”), “N” (for “no”) or “M” (for “maybe”) in 
each un-shaded box of the table below to identify the nature of each quantity that appears in the equations.
Quantity An Input ? A State 
Variable ?
A Rate 
Variable ?
An Output ? An Intermediate 
(Derived) Variable ?
A Parameter?

State whether there is any other state variable not mentioned in the table above. State also whether there is any 
other rate variable not mentioned in the table above. 
[10 marks]
Task 2. Correct the necessary lines of code present in the supplied function, <f_thrust.m> and present that 
function in your report. Then call that function directly from the MATLAB for four different wind speeds: 
{ 3m/s, 9.5m/s, 14m/s, 28m/s }. Report the results. 
HINT: To get the answer for 9.5m/s, type … f_thrust( 9.5) at the MATLAB command prompt. 
[10 marks]
Task 3. Without using SIMULINK, determine an equilibrium condition for the dynamic system at the wind 
speeds 9.5m/s and 14m/s. For each of these speeds, report the following steady values, 
𝐹9.5 = , 𝐹14 = 
𝜙9.5 = , 𝜙14 = 
w**2;9.5 = , w**2;14 = 
HINT: There is no “closed-form” solution here so you will have to apply an iterative approach of some sort. A 
manual iteration process is fine. You do not have to write any code to implement an iterative solution automatically 
or to use any built-in iterative methods within MATLAB. 
[15 marks]
Task 4. Now create a SIMULINK model of the system and run this model over a period of 500s with a constant 
wind-speed of 9.5m/s taking the initial conditions to be (0) = 0.15 rad and 𝜙(0) = 0. Plot q(t) vs. t . 
[25 marks]
Task 5. Modify the SIMULINK model from Task 4 so that the wind speed is now varying sinusoidally 
according to w**7;(w**5;) = 9.5 + 0.2𝑐w**0;w**4;(0.2w**5;). Change the initial conditions so that (0) =  determined from Task 3. 
Plot q(t) vs. t over 500s.
[10 marks]
Task 6. Create state-space representations of the system for each of the two different equilibrium conditions 
discovered in Task 3. In each case, treat v(t) as the only input and q(t) as the only output and report the matrices, 
{A, B, C, D} for both cases separately. For the case of v(t)  9.5 m/s, use these matrices to develop an alternative 
prediction for q(t) vs. t from Task 5. Create a plot containing two curves on the same graph representing q(t) vs. t. 
One of those curves should use the data from Task 5 and the second curve should use the data from Task 6.
[15 marks]
Task 7. Calculate the eigenvalues of the matrix A for the case v(t)  14 m/s and interpret what these 
eigenvalues tell you. Modify the SIMULINK model from Task 4 so that the input wind speed is now a steady 
14m/s. Set the initial conditions to be (0) = ( + ) and run this model for 500s. Once again, plot q(t) vs. t. 
Comment on any connections between what you see from the SIMULINK model output and what you found from 
the eigenvalues of matrix A. 
[15 marks]

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:LCSCI4207代做、Java/Python程序代寫
  • 下一篇:代寫CIS5200、代做Java/Python程序語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                国产在线播放一区三区四| 成人免费高清在线| 色综合久久88色综合天天6| 亚洲欧美激情小说另类| 91网址在线看| 国产真实乱子伦精品视频| 中文字幕中文乱码欧美一区二区 | 国产传媒日韩欧美成人| 国产精品国产三级国产a| 日韩视频一区二区三区在线播放| 日韩av不卡一区二区| 午夜视频一区二区| 亚洲一二三四在线观看| 18欧美乱大交hd1984| 日韩视频在线你懂得| 国产在线精品一区二区三区不卡| 18欧美亚洲精品| 欧美激情在线观看视频免费| 欧美日本精品一区二区三区| av中文字幕不卡| 国产一区二区电影| 韩国中文字幕2020精品| 老司机免费视频一区二区三区| 国产亚洲短视频| 精品久久国产老人久久综合| 欧美一区二区三区日韩| 一本久久综合亚洲鲁鲁五月天 | 精品国免费一区二区三区| 日韩欧美一级二级三级久久久| 欧美日本乱大交xxxxx| 99这里都是精品| 欧美日本一道本| 久久久美女艺术照精彩视频福利播放| 国产午夜三级一区二区三| 久久久久久黄色| 亚洲丝袜美腿综合| 午夜精品久久久久影视| 国产一区91精品张津瑜| 成人午夜av电影| 欧美日韩卡一卡二| 日本一区二区三区四区| 亚洲精品网站在线观看| 久久99国产精品麻豆| 91免费国产视频网站| 日韩欧美中文字幕精品| 亚洲私人影院在线观看| 老汉av免费一区二区三区| a级高清视频欧美日韩| 日韩一区二区三区免费观看| 污片在线观看一区二区| 欧洲精品视频在线观看| 亚洲欧美日韩国产中文在线| 成年人网站91| 欧美一区二区成人| 亚洲欧美日韩国产成人精品影院 | 亚洲视频免费观看| 另类调教123区| 在线观看亚洲精品| 精品成人免费观看| 首页亚洲欧美制服丝腿| 在线看国产一区二区| 国产精品美女一区二区| 六月婷婷色综合| 91精品国产色综合久久不卡蜜臀| 一区二区三区成人在线视频| 高清av一区二区| 亚洲欧美国产毛片在线| 欧美视频一二三区| 亚洲一区二区欧美日韩| 色综合久久久久久久久| 国产免费观看久久| 成人app在线| 亚洲小说欧美激情另类| 在线观看日韩毛片| 调教+趴+乳夹+国产+精品| 欧美视频完全免费看| 日本成人在线网站| 亚洲精品在线电影| 夫妻av一区二区| 中文字幕日本不卡| 91黄视频在线| 久久精品国产一区二区三区免费看| 日韩一二三区视频| 国产一区在线视频| 亚洲国产精品99久久久久久久久| 99精品国产99久久久久久白柏| 亚洲日穴在线视频| 26uuu欧美日本| 欧洲中文字幕精品| 久草在线在线精品观看| 国产精品乱码妇女bbbb| 欧美日韩国产另类一区| 精品一区二区三区免费播放| 欧美日韩黄视频| 中文字幕中文在线不卡住| av电影天堂一区二区在线观看| 日韩精品午夜视频| 亚洲美女在线国产| 久久久91精品国产一区二区精品| 欧美日韩精品二区第二页| 91热门视频在线观看| 成人午夜私人影院| 国产馆精品极品| 精品综合久久久久久8888| 亚洲国产精品一区二区久久恐怖片| 欧美极品少妇xxxxⅹ高跟鞋| 欧美一区在线视频| 91碰在线视频| 欧美一区二区三区免费大片| 久久先锋资源网| 天堂精品中文字幕在线| 亚洲人妖av一区二区| 一区二区免费在线播放| 首页国产丝袜综合| 天堂成人免费av电影一区| 国产麻豆精品theporn| 99久久精品一区| 3atv一区二区三区| 国产日本一区二区| 中文字幕在线不卡视频| 国产精品九色蝌蚪自拍| 亚洲欧美另类小说| 亚洲电影视频在线| 午夜精品久久一牛影视| 久久国产精品无码网站| 国产一区二区三区在线观看免费视频| 麻豆国产欧美一区二区三区| 国内国产精品久久| 成人性生交大片免费看视频在线| av在线不卡网| 欧美一区二区三区在线观看视频| 日韩精品影音先锋| 欧美经典一区二区| 亚洲男同1069视频| 视频一区二区中文字幕| 国产成人亚洲综合a∨猫咪| 日本电影欧美片| 久久久久9999亚洲精品| 亚洲免费观看高清完整版在线观看熊| 亚洲一区二区三区在线看| 美女精品自拍一二三四| 91热门视频在线观看| 精品国产伦一区二区三区免费| 亚洲国产成人午夜在线一区| 日本一区中文字幕| 一本久道久久综合中文字幕| 精品免费一区二区三区| 亚洲在线观看免费视频| 99精品黄色片免费大全| 国产精品色一区二区三区| 国产精品亚洲视频| 欧美va亚洲va国产综合| 亚洲精品va在线观看| 91麻豆产精品久久久久久| 中文字幕一区二区视频| 99久久伊人精品| 尤物视频一区二区| 成人va在线观看| 国产清纯在线一区二区www| 久久精品国产亚洲高清剧情介绍| 欧美女孩性生活视频| 亚洲成va人在线观看| 日韩一级成人av| 97久久精品人人澡人人爽| 国产调教视频一区| 欧美日韩亚州综合| 国内不卡的二区三区中文字幕| 国产人久久人人人人爽| 色综合久久天天| 亚洲福利电影网| 欧美一区二区私人影院日本| 亚洲成av人片一区二区梦乃| 日韩一区二区三| 亚洲图片欧美色图| 欧美蜜桃一区二区三区| 亚洲免费观看高清完整版在线 | 久久亚洲一级片| 成人综合在线视频| 亚洲另类在线一区| 欧美一级精品在线| 99久久99久久精品免费观看| 亚洲免费高清视频在线| 欧美精品第一页| 免费久久99精品国产| 亚洲欧洲无码一区二区三区| 欧美视频完全免费看| 成人性生交大片免费看在线播放| 一区二区三区欧美视频| 欧美另类z0zxhd电影| 91免费看片在线观看| 丁香婷婷综合色啪| 韩日av一区二区| 亚洲午夜电影网| 久久精品一区二区三区四区| 在线观看亚洲成人| 色诱视频网站一区| 色成年激情久久综合| 91亚洲国产成人精品一区二区三| 久88久久88久久久| 一区二区三区精品视频在线|