99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CIS5200、代做Java/Python程序語言
代寫CIS5200、代做Java/Python程序語言

時間:2024-11-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CIS5200: Machine Learning Fall 2024
Homework 2
Release Date: October 9, 2024 Due Date: October 18, 2024
• HW2 will count for 10% of the grade. This grade will be split between the written (30 points)
and programming (40 points) parts.
• All written homework solutions are required to be formatted using LATEX. Please use the
template here. Do not modify the template. This is a good resource to get yourself more
familiar with LATEX, if you are still not comfortable.
• You will submit your solution for the written part of HW2 as a single PDF file via Gradescope.
The deadline is 11:59 PM ET. Contact TAs on Ed if you face any issues uploading your
homeworks.
• Collaboration is permitted and encouraged for this homework, though each student must
understand, write, and hand in their own submission. In particular, it is acceptable for
students to discuss problems with each other; it is not acceptable for students to look at
another student’s written Solutions when writing their own. It is also not acceptable to
publicly post your (partial) solution on Ed, but you are encouraged to ask public questions
on Ed. If you choose to collaborate, you must indicate on each homework with whom you
collaborated.
Please refer to the notes and slides posted on the website if you need to recall the material discussed
in the lectures.
1 Written Questions (30 points)
Problem 1: Gradient Descent (20 points)
Consider a training dataset S = {(x1, y1), . . . ,(xm, ym)} where for all i ∈ [m], ∥xi∥2 ≤ 1 and
yi ∈ {−1, 1}. Suppose we want to run regularized logistic regression, that is, solve the following
optimization problem: for regularization term R(w),
min
w m
1
mX
i=1
log  1 + exp  −yiw
⊤xi
 + R(w)
Recall: For showing that a twice differentiable function f is µ-strongly convex, it suffices to show
that the hessian satisfies: ∇2f ⪰ µI. Similarly to show hat a twice differentiable function f is
L-smooth, it suffices to show that the hessian satisfies: LI ⪰ ∇2f. Here I is the identity matrix of
the appropriate dimension.
1
1.1 (3 points) In the case where R(w) = 0, we know that the objective is convex. Is it strongly
convex? Explain your answer.
1.2 (3 points) In the case where R(w) = 0, show that the objective is **smooth.
1.3 (4 points) In the case of R(w) = 0, what is the largest learning rate that you can choose such
that the objective is non-increasing at each iteration? Explain your answer.
Hint: The answer is not 1/L for a L-smooth function.
1.4 (1 point) What is the convergence rate of gradient descent on this problem with R(w) = 0?
In other words, suppose I want to achieve F(wT +1) − F(w∗) ≤ ϵ, express the number of iterations
T that I need to run GD for.
Note: You do not need to reprove the convergence guarantee, just use the guarantee to provide the
rate.
1.5 (5 points) Consider the following variation of the ℓ2 norm regularizer called the weighted ℓ2
norm regularizer: for λ1, . . . , λd ≥ 0,
Show that the objective with R(w) as defined above is µ-strongly convex and L-smooth for µ =
2 minj∈[d] λj and L = 1 + 2 maxj∈[d] λj .
1.6 (4 points) If a function is µ-strongly convex and L-smooth, after T iterations of gradient
descent we have:
Using the above, what is the convergence rate of gradient descent on the regularized logistic re gression problem with the weighted ℓ2 norm penalty? In other words, suppose I want to achieve
∥wT +1 − w∗∥2 ≤ ϵ, express the number of iterations T that I need to run GD.
Note: You do not need to prove the given convergence guarantee, just provide the rate.
Problem 2: MLE for Linear Regression (10 points)
In this question, you are going to derive an alternative justification for linear regression via the
squared loss. In particular, we will show that linear regression via minimizing the squared loss is
equivalent to maximum likelihood estimation (MLE) in the following statistical model.
Assume that for given x, there exists a true linear function parameterized by w so that the label y
is generated randomly as
y = w
⊤x + ϵ
2
where ϵ ∼ N (0, σ2
) is some normally distributed noise with mean 0 and variance σ
2 > 0. In other
words, the labels of your data are equal to some true linear function, plus Gaussian noise around
that line.
2.1 (3 points) Show that the above model implies that the conditional density of y given x is
P p(y|x) = 1.
Hint: Use the density function of the normal distribution, or the fact that adding a constant to a
Gaussian random variable shifts the mean by that constant.
2.2 (2 points) Show that the risk of the predictor f(x) = E[y|x] is σ.
2.3 (3 points) The likelihood for the given data {(x1, y1), . . . ,(xm, ym)} is given by.
Lˆ(w, σ) = p(y1, . . . , ym|x1, . . . , xm) =
Compute the log conditional likelihood, that is, log Lˆ(w, σ).
Hint: Use your expression for p(y | x) from part 2.1.
2.4 (2 points) Show that the maximizer of log Lˆ(w, σ) is the same as the minimizer of the empirical
risk with squared loss, ˆR(w) = m
Hint: Take the derivative of your result from 2.3 and set it equal to zero.
2 Programming Questions (20 points)
Use the link here to access the Google Colaboratory (Colab) file for this homework. Be sure to
make a copy by going to “File”, and “Save a copy in Drive”. As with the previous homeworks, this
assignment uses the PennGrader system for students to receive immediate feedback. As noted on
the notebook, please be sure to change the student ID from the default ‘99999999’ to your 8-digit
PennID.
Instructions for how to submit the programming component of HW 2 to Gradescope are included
in the Colab notebook. You may find this PyTorch linear algebra reference and this general
PyTorch reference to be helpful in perusing the documentation and finding useful functions for
your implementation.


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代寫MMME4056、代做MATLAB編程設計
  • 下一篇:CSCI 201代做、代寫c/c++,Python編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                美女网站色91| 狠狠狠色丁香婷婷综合久久五月| 麻豆freexxxx性91精品| 337p亚洲精品色噜噜噜| 久久se这里有精品| 国产精品妹子av| 色94色欧美sute亚洲线路一久| 亚洲一区二区三区激情| 欧美一个色资源| 成人aaaa免费全部观看| 国产精品第13页| 91精品国产综合久久精品麻豆 | 人人狠狠综合久久亚洲| 精品99一区二区| 一本久道中文字幕精品亚洲嫩| 视频在线在亚洲| 国产精品久久久久天堂| 欧美一卡二卡三卡| 99re这里都是精品| 乱一区二区av| 亚洲第一搞黄网站| 日韩美女视频一区二区| 欧美一区二区三区人| 99re这里只有精品6| 激情久久五月天| 午夜久久久久久久久| 国产精品久久久久久久久免费相片| 7777女厕盗摄久久久| 91视频精品在这里| 国产+成+人+亚洲欧洲自线| 免费观看在线综合色| 亚洲一区二区三区影院| 成人免费一区二区三区在线观看| 亚洲精品一区二区三区影院 | 国产一区二区三区在线看麻豆| 亚洲激情图片一区| 国产精品久久久久久久久快鸭| 欧美成人欧美edvon| 欧美日韩你懂的| 欧美日韩三级一区| 欧美性色黄大片| 99re这里只有精品6| 国产.欧美.日韩| 国产精品亚洲一区二区三区妖精| 另类小说综合欧美亚洲| 午夜精品久久久久久久99樱桃| 亚洲视频网在线直播| 国产欧美日韩精品在线| 国产亚洲综合色| 亚洲国产成人午夜在线一区 | av网站一区二区三区| 丁香天五香天堂综合| 国产91精品免费| 国产精品88888| 99国产精品视频免费观看| 日韩二区三区四区| 色综合天天综合网天天看片| 国产精品亚洲一区二区三区妖精| 久久久午夜精品理论片中文字幕| www国产精品av| 五月综合激情网| 国产精品视频线看| 欧美精品久久一区二区三区| 91精品欧美一区二区三区综合在| 欧美久久久一区| 精品久久国产老人久久综合| 欧美精品一区二区在线播放| 91精品免费观看| 91精品国产综合久久精品app| 欧美一区二区久久| 26uuu精品一区二区在线观看| 国产欧美日韩不卡免费| 中文字幕第一区二区| 亚洲人精品午夜| 日本va欧美va欧美va精品| 国产一区日韩二区欧美三区| 国产69精品一区二区亚洲孕妇 | av激情成人网| 欧美亚洲高清一区| 精品日产卡一卡二卡麻豆| 久久久久国产精品人| 亚洲三级免费观看| 水蜜桃久久夜色精品一区的特点 | 亚洲欧洲另类国产综合| 欧美剧在线免费观看网站| 亚洲精品视频自拍| 色激情天天射综合网| 亚洲一区日韩精品中文字幕| 色视频欧美一区二区三区| 国产麻豆欧美日韩一区| 国产又粗又猛又爽又黄91精品| 一本一本久久a久久精品综合麻豆| 91麻豆精品国产自产在线观看一区 | 中文字幕亚洲精品在线观看 | 高清在线成人网| 欧美性一二三区| 久久综合色天天久久综合图片| 中文字幕视频一区二区三区久| 男女男精品网站| 色综合欧美在线视频区| 久久久亚洲综合| 亚瑟在线精品视频| 97aⅴ精品视频一二三区| 精品欧美乱码久久久久久 | 亚洲午夜日本在线观看| 国产激情视频一区二区在线观看| 欧美色爱综合网| 亚洲欧美影音先锋| 日本sm残虐另类| 欧美色视频在线| 中文字幕一区二区三区视频| 国内精品嫩模私拍在线| 日韩一区国产二区欧美三区| 91在线视频观看| 亚洲综合成人在线视频| 日韩欧美精品在线| 日韩美女啊v在线免费观看| 中文字幕在线播放不卡一区| 成人自拍视频在线观看| 91丝袜呻吟高潮美腿白嫩在线观看| 欧美日韩aaaaa| 国产乱码精品一品二品| 欧美人狂配大交3d怪物一区| 国产成人亚洲精品狼色在线| 欧美韩国一区二区| 一本色道久久综合亚洲91| 久久婷婷久久一区二区三区| 舔着乳尖日韩一区| 色系网站成人免费| 亚洲第一狼人社区| 奇米影视7777精品一区二区| 极品瑜伽女神91| 久久久久久一二三区| 中文字幕精品三区| 精品国产乱码久久久久久浪潮 | 亚洲午夜av在线| 欧美主播一区二区三区| 国产精品一区二区黑丝| 亚洲资源在线观看| 成人爱爱电影网址| 91精品国产欧美一区二区18| 香港成人在线视频| 99视频精品全部免费在线| 国产精品对白交换视频| 色诱视频网站一区| 亚洲超碰精品一区二区| 日韩免费高清av| 成人综合婷婷国产精品久久免费| 中文字幕亚洲一区二区va在线| 色呦呦网站一区| 蜜臀91精品一区二区三区| 国产三级精品视频| 91豆麻精品91久久久久久| 美腿丝袜亚洲三区| 中文欧美字幕免费| 欧美精品乱码久久久久久| 国产露脸91国语对白| 亚洲一区日韩精品中文字幕| 午夜精品久久久久久久99水蜜桃| 亚洲婷婷在线视频| 亚洲精品国产a久久久久久 | 亚洲国产视频直播| 精品久久人人做人人爽| 91蜜桃免费观看视频| 免费成人在线影院| 有码一区二区三区| 久久影院午夜论| 在线观看不卡视频| 福利一区福利二区| 日本美女一区二区三区视频| 亚洲欧洲制服丝袜| 国产欧美综合在线观看第十页| 欧美日高清视频| 国产精品美女一区二区| 日韩av不卡在线观看| 蜜臀av在线播放一区二区三区 | 国产精品无人区| 欧美主播一区二区三区美女| 久久久精品国产免大香伊| 午夜精品福利一区二区三区蜜桃| 久99久精品视频免费观看| 一区二区三区中文字幕电影| 96av麻豆蜜桃一区二区| 五月婷婷综合激情| 欧美日韩国产一二三| 国产麻豆精品在线| 欧美精品色综合| 在线成人小视频| 成人av小说网| 国产精品久久久久久久浪潮网站| 欧美体内she精高潮| 日韩欧美国产系列| 日本一区二区视频在线观看| 日韩主播视频在线| 久久久国产午夜精品| 亚洲欧洲日韩女同| 成人在线综合网| 欧美日韩免费视频| 美腿丝袜亚洲三区| 国产日韩精品一区|