99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做IMSE7140、代寫Java/c++程序語言
代做IMSE7140、代寫Java/c++程序語言

時間:2024-11-03  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



IMSE7140 Assignment 2
Cracking CAPTCHAs
(20 points)
2.1 Brief Introduction
CAPTCHA or captcha is the acronym for “Completely Automated Public Turing test
to tell Computers and Humans Apart.” You must have been already familiar with it
because of its popularity in preventing bot attacks or spam everywhere. This assign ment, however, will guide you in implementing a deep learning model that can crack a
commercial-level captcha!
You deliverables for this assignment should include
1. A single PDF file answers.pdf with answers to all the questions explicitly marked
by “Q” with a serial number in this document, and
2. A train.py file to fulfill the programming task requirements marked by “PT.”
Of course, GPUs can facilitate your experiments—Don’t worry if you don’t have any,
the training requirement is deliberately simplified.
2.2 Training your model
The captchas we will crack is the multicolorcaptcha. Please pip install the exact version
1.2.0 (the current latest one) in case there might be any incompatibility for other releases.
We use the following codes to generate captchas.
1 from multicolorcaptcha import CaptchaGenerator
2
3 generator = CaptchaGenerator (0)
4 captcha = generator . gen_captcha_image ( difficult_level =0)
5 image = captcha . image
6 characters = captcha . characters
7 image . save ( f"{ characters }. png", "PNG")
In this snippet, CaptchaGenerator(0) configures the image size to 256 × 144 pixels,
and the difficult level is set to 0 so that the captchas only contains four 0–9 digits.
Please run the code snippet on your computer. If the captcha is successfully generated,
it should look like Figure 2.1.
1
2.2. Training your model S. Qin
Figure 2.1: Sample captcha with digits 0570
The training and the validation datasets are generated and attached in folders
capts train and capts val. For any machine learning problem, before you start to
devise a solution, it is always a good idea to observe the data and gain some intuition
first. You may immediately recognize some difficulties in this task:
• The digits have a set of random fonts and colors;
• Some certain range of random rotations are applied to the digits;
• Some line segments are randomly added to the image.
Such a task is considered impossible for traditional pattern recognition methods,
which may tackle the problem in a process like this: image thresholding, segmenta tion, handcrafted filter design, and pattern matching. We can conjecture that “filter
design” may fail in capturing useful features and “pattern matching” may have a poor
performance.
Fortunately, in the deep learning era, we can delegate the pattern or feature extrac tion job to deep neural networks. As introduced in the previous lecture “Deep Learning
for Computer Vision,” the slide “Understand feature maps: CAPTCHA recognition”
shows that a typical architecture for the task consists of two parts:
1. A backbone model to extract a feature map from the captcha image, and
2. A certain amount of prediction heads to interpret the feature map to readable
forms.
We will follow this architecture in this assignment. I encourage you to search open source solutions and learn from their experience. Here we follow this Kaggle post by
Ashadullah Shawon.
PT| Use capts train as the training dataset, capts val as the validation dataset, and Keras
as the deep learning framework, referring to Shawon’s solution, provide the training code
train.py that fulfills the following requirements. “Copy and paste” the codes from the
original post is allowed, as well as other AI-generated codes.
2
2.3. Example: A practical model S. Qin
1. The maximal number for epochs should be 10. Considering some students
will train the model by CPU, it is fair to limit the number of epochs, so the training
time for the model should be less than half an hour.
2. The accuracy for one digit should be no less than 30% after training for
10 epochs. The training outputs contain four accuracies respective to the four
digits. Since they are similar, you will only need to examine one of them. Keep in
mind that 30% for one digit indicates that the overall accuracy for the recognition
is only 0.3
4 = 0.81%. Such a low accuracy is not useful for cracking the captcha.
However, on the one hand, you may need a GPU to experiment on a practical
solution; on the other hand, a wild guess for a 0–9 digit has an accuracy of 10%,
so if your model’s accuracy can reach 30% after 10 epochs, it already indicates
the model learns from the training set. Hint: if the accuracy for one digit keeps
wandering around 0.1 but not increasing in the first two or three epochs, it is the
signal that you should modify somewhere in your code and try again.
3. The trained model should be saved as a file my model.keras after training.
Though, this model file my model.keras doesn’t need to be uploaded.
Q1| Can we convert the captcha images to grayscale at the preprocessing stage before train ing? What is the possible advantage by doing that? If any, can you point out the
possible disadvantage?
Q2| After the 10-epoch training, what are your accuracies of one digit, for the training and
the validation datasets respectively?
Q3| Is the accuracy for the validation dataset lower than that for the training dataset? What
are the possible reasons?
Q4| How can we improve the model’s performance on the validation dataset? List at least
three different measures.
2.3 Example: A practical model
To demonstrate that the backbone–heads architecture can actually solve the real-world
captcha, I trained a relatively large model by an Nvidia GeForce RTX 30** GPU.
You may find in attached the model file 099**0.9956.keras and the inference code
inference.py. The accuracies versus training epochs are shown in Figure 2.2. The
inference code reads a randomly generated captcha, inferences the model, and compares
the predicted results with the targets. You can press “n” for the next captcha or “q” to
quit the program. You may need to pip install keras cv to run the code.
Q5| What kind of backbone did I use in the model 099**0.9956.keras?
Q6| The backbone’s pre-trained weights on the ImageNet 2012 dataset were loaded before
training. What is the possible advantage by doing that?
Q7| Why didn’t I use any dropout in the model? Guess the reason.
Q8| In Figure 2.2, you may have noticed that the accuracies rise very fast from 0 to 0.9, but
significantly slow from 0.95 to 0.99. Explain the phenomenon.
Q9| Using the same hardware (which means you can’t upgrade the GPU, for example), how
can we speed up the learning process of the model, i.e. the rate of convergence?
3
2.3. Example: A practical model S. Qin
0 200 40**00 800 1000
Epoch
0.2
0.4
0.6
0.8
1.0
Model Accuracies
digi0
digi1
digi2
digi3
Figure 2.2: Accuracies through 1000 epochs in training
Q10| Since the accuracy for one digit is about 99%, the overall accuracy for a captcha is
0.994 ≈ 96%. This performance would be better than humans. Can you propose some
methods that can even further improve the performance?
Please note that, not all the questions above have a definite answer. You may also
need to do some research as the course doesn’t cover all the details in class. The source
code for training this model and the reference answers will be available on Moodle or
sent by email after all the students completing the submission.


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:IS3240代做、代寫c/c++,Java程序語言
  • 下一篇:DATA 2100代寫、代做Python語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                欧美精品一区二区三区蜜臀| 国产精品18久久久久久久久久久久| 国产成人在线观看| 亚洲成av人片在线| 亚洲福利一二三区| 一区二区三区在线观看国产| 国产精品久久久久久久久果冻传媒| 制服丝袜一区二区三区| 欧美日本在线观看| 99精品一区二区| 国产在线视频精品一区| 亚洲精品一区在线观看| 91精品国产综合久久福利| 欧美专区在线观看一区| 粉嫩欧美一区二区三区高清影视| 精品在线播放午夜| 视频一区在线播放| 久久精品国产一区二区三区免费看| 亚洲欧洲av另类| 亚洲欧洲日产国码二区| 亚洲视频一二三| 亚洲国产日韩一区二区| 亚洲尤物视频在线| 亚洲精品视频免费看| 一区二区三区不卡视频 | 国产69精品久久99不卡| 久久99久久久久| 国产中文字幕精品| 粉嫩欧美一区二区三区高清影视| 免费不卡在线视频| 久久国内精品视频| 99免费精品在线| 制服丝袜亚洲精品中文字幕| 欧美精品一区二区三区视频| 玉米视频成人免费看| 蜜桃久久久久久久| 99久久精品国产毛片| 欧美系列在线观看| 久久九九影视网| 亚洲第一精品在线| 国产一区在线观看麻豆| 成人av综合一区| 91精品国产麻豆国产自产在线| 精品国产污污免费网站入口 | 日日夜夜精品视频免费| 国产成人精品影视| 制服丝袜在线91| 国产精品久久久久久久久久久免费看| 亚洲国产视频a| 国产成人免费视频网站高清观看视频 | 国产亚洲欧美日韩俺去了| 亚洲激情在线激情| 国产成人av影院| 欧美一区二区三区喷汁尤物| 亚洲色图清纯唯美| 免费av成人在线| 欧洲国产伦久久久久久久| 国产精品天美传媒| 精品亚洲免费视频| 在线成人高清不卡| 亚洲激情在线激情| 99视频精品免费视频| 久久综合久久综合九色| 午夜免费欧美电影| 91麻豆精品在线观看| 久久欧美一区二区| 理论片日本一区| 日韩一卡二卡三卡四卡| 亚洲最新视频在线观看| 国产91在线观看丝袜| 久久久精品黄色| 亚洲一区二区三区在线播放| 亚洲天堂免费在线观看视频| 全部av―极品视觉盛宴亚洲| 欧洲另类一二三四区| 亚洲精品ww久久久久久p站| 成人黄色a**站在线观看| 久久久久国产精品厨房| 国产精品小仙女| 久久麻豆一区二区| 国产乱国产乱300精品| 日韩精品一区二区三区视频在线观看| 男人操女人的视频在线观看欧美| 91精品国产综合久久小美女| 亚洲国产精品久久艾草纯爱| 欧美日韩一区二区三区免费看| 尤物av一区二区| 精品视频资源站| 视频一区二区国产| 欧美一区二区视频在线观看2022 | 大胆欧美人体老妇| 中文字幕一区二区三区av| 一本大道久久精品懂色aⅴ| 亚洲综合在线观看视频| 欧美日韩一区中文字幕| 日韩av在线发布| 26uuu久久综合| 国产精品亚洲午夜一区二区三区 | 久久电影网站中文字幕| 久久久久久免费毛片精品| 激情文学综合网| 国产精品色哟哟网站| 欧美一区二区福利视频| 国产ts人妖一区二区| 亚洲码国产岛国毛片在线| 欧美中文字幕一区| 韩国三级在线一区| 一区二区三区四区在线播放| 欧美日韩一级二级三级| 另类欧美日韩国产在线| 亚洲欧美一区二区在线观看| 欧美视频在线播放| 国产精品资源网| 一区二区三区欧美久久| 欧美成人伊人久久综合网| 国产黄色成人av| 亚洲线精品一区二区三区八戒| 26uuu另类欧美| 欧美综合亚洲图片综合区| 国产又粗又猛又爽又黄91精品| 亚洲精品视频在线观看免费| 欧美成人乱码一区二区三区| 色偷偷久久人人79超碰人人澡| 欧美96一区二区免费视频| 国产精品久久二区二区| 欧美一级日韩不卡播放免费| 91视频.com| 国产精品资源在线看| 午夜成人免费视频| 国产精品久久久久天堂| 欧美一区二区三区视频免费播放| 91免费小视频| 国产精品一二三四五| 日本不卡的三区四区五区| 一区二区三区四区蜜桃| 国产亚洲欧美一区在线观看| 欧美精品一卡二卡| 91亚洲国产成人精品一区二三| 强制捆绑调教一区二区| 亚洲综合色成人| 国产亚洲自拍一区| 91精品国产综合久久久久久| 色综合中文字幕| 成+人+亚洲+综合天堂| 紧缚奴在线一区二区三区| 五月天亚洲精品| 亚洲午夜激情网页| 亚洲自拍欧美精品| 亚洲精品中文在线观看| 亚洲欧美福利一区二区| 中文字幕一区二区三区在线播放| 国产精品视频yy9299一区| 精品日韩一区二区三区| 色哟哟国产精品免费观看| 成人综合婷婷国产精品久久蜜臀 | 精品一区二区三区的国产在线播放| 一区二区三区四区亚洲| 久久精品一区二区三区四区| 欧美一区二区三区系列电影| 欧美亚洲日本一区| 91蜜桃婷婷狠狠久久综合9色| 95精品视频在线| 国产一区二区三区最好精华液| 久久精品国产77777蜜臀| 一卡二卡欧美日韩| 婷婷一区二区三区| 一区二区三区av电影 | 欧美精品一区二区不卡 | 91丝袜美女网| 国产精品一区一区三区| 国产成人福利片| 99久久伊人网影院| 波多野结衣91| 91欧美一区二区| 欧美天堂一区二区三区| 在线视频你懂得一区| 9191国产精品| 日韩一区二区不卡| 欧美xxx久久| 国产偷国产偷精品高清尤物| 国产视频911| 国产精品护士白丝一区av| 精品国产乱码久久久久久闺蜜| 欧美成人伊人久久综合网| 久久免费视频一区| 欧美韩国日本一区| 一区二区三区四区视频精品免费| 亚洲高清一区二区三区| 日韩精品每日更新| 国精品**一区二区三区在线蜜桃| 国产麻豆午夜三级精品| 岛国精品在线播放| 精品视频在线免费观看| 日韩一级完整毛片| 国产亚洲成av人在线观看导航| 1024亚洲合集| 日韩在线观看一区二区| 国产乱码精品一区二区三区忘忧草| 91丨九色丨黑人外教| 欧美日韩电影在线|