99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做IMSE7140、代寫Java/c++程序語言
代做IMSE7140、代寫Java/c++程序語言

時間:2024-11-03  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



IMSE7140 Assignment 2
Cracking CAPTCHAs
(20 points)
2.1 Brief Introduction
CAPTCHA or captcha is the acronym for “Completely Automated Public Turing test
to tell Computers and Humans Apart.” You must have been already familiar with it
because of its popularity in preventing bot attacks or spam everywhere. This assign ment, however, will guide you in implementing a deep learning model that can crack a
commercial-level captcha!
You deliverables for this assignment should include
1. A single PDF file answers.pdf with answers to all the questions explicitly marked
by “Q” with a serial number in this document, and
2. A train.py file to fulfill the programming task requirements marked by “PT.”
Of course, GPUs can facilitate your experiments—Don’t worry if you don’t have any,
the training requirement is deliberately simplified.
2.2 Training your model
The captchas we will crack is the multicolorcaptcha. Please pip install the exact version
1.2.0 (the current latest one) in case there might be any incompatibility for other releases.
We use the following codes to generate captchas.
1 from multicolorcaptcha import CaptchaGenerator
2
3 generator = CaptchaGenerator (0)
4 captcha = generator . gen_captcha_image ( difficult_level =0)
5 image = captcha . image
6 characters = captcha . characters
7 image . save ( f"{ characters }. png", "PNG")
In this snippet, CaptchaGenerator(0) configures the image size to 256 × 144 pixels,
and the difficult level is set to 0 so that the captchas only contains four 0–9 digits.
Please run the code snippet on your computer. If the captcha is successfully generated,
it should look like Figure 2.1.
1
2.2. Training your model S. Qin
Figure 2.1: Sample captcha with digits 0570
The training and the validation datasets are generated and attached in folders
capts train and capts val. For any machine learning problem, before you start to
devise a solution, it is always a good idea to observe the data and gain some intuition
first. You may immediately recognize some difficulties in this task:
• The digits have a set of random fonts and colors;
• Some certain range of random rotations are applied to the digits;
• Some line segments are randomly added to the image.
Such a task is considered impossible for traditional pattern recognition methods,
which may tackle the problem in a process like this: image thresholding, segmenta tion, handcrafted filter design, and pattern matching. We can conjecture that “filter
design” may fail in capturing useful features and “pattern matching” may have a poor
performance.
Fortunately, in the deep learning era, we can delegate the pattern or feature extrac tion job to deep neural networks. As introduced in the previous lecture “Deep Learning
for Computer Vision,” the slide “Understand feature maps: CAPTCHA recognition”
shows that a typical architecture for the task consists of two parts:
1. A backbone model to extract a feature map from the captcha image, and
2. A certain amount of prediction heads to interpret the feature map to readable
forms.
We will follow this architecture in this assignment. I encourage you to search open source solutions and learn from their experience. Here we follow this Kaggle post by
Ashadullah Shawon.
PT| Use capts train as the training dataset, capts val as the validation dataset, and Keras
as the deep learning framework, referring to Shawon’s solution, provide the training code
train.py that fulfills the following requirements. “Copy and paste” the codes from the
original post is allowed, as well as other AI-generated codes.
2
2.3. Example: A practical model S. Qin
1. The maximal number for epochs should be 10. Considering some students
will train the model by CPU, it is fair to limit the number of epochs, so the training
time for the model should be less than half an hour.
2. The accuracy for one digit should be no less than 30% after training for
10 epochs. The training outputs contain four accuracies respective to the four
digits. Since they are similar, you will only need to examine one of them. Keep in
mind that 30% for one digit indicates that the overall accuracy for the recognition
is only 0.3
4 = 0.81%. Such a low accuracy is not useful for cracking the captcha.
However, on the one hand, you may need a GPU to experiment on a practical
solution; on the other hand, a wild guess for a 0–9 digit has an accuracy of 10%,
so if your model’s accuracy can reach 30% after 10 epochs, it already indicates
the model learns from the training set. Hint: if the accuracy for one digit keeps
wandering around 0.1 but not increasing in the first two or three epochs, it is the
signal that you should modify somewhere in your code and try again.
3. The trained model should be saved as a file my model.keras after training.
Though, this model file my model.keras doesn’t need to be uploaded.
Q1| Can we convert the captcha images to grayscale at the preprocessing stage before train ing? What is the possible advantage by doing that? If any, can you point out the
possible disadvantage?
Q2| After the 10-epoch training, what are your accuracies of one digit, for the training and
the validation datasets respectively?
Q3| Is the accuracy for the validation dataset lower than that for the training dataset? What
are the possible reasons?
Q4| How can we improve the model’s performance on the validation dataset? List at least
three different measures.
2.3 Example: A practical model
To demonstrate that the backbone–heads architecture can actually solve the real-world
captcha, I trained a relatively large model by an Nvidia GeForce RTX 30** GPU.
You may find in attached the model file 099**0.9956.keras and the inference code
inference.py. The accuracies versus training epochs are shown in Figure 2.2. The
inference code reads a randomly generated captcha, inferences the model, and compares
the predicted results with the targets. You can press “n” for the next captcha or “q” to
quit the program. You may need to pip install keras cv to run the code.
Q5| What kind of backbone did I use in the model 099**0.9956.keras?
Q6| The backbone’s pre-trained weights on the ImageNet 2012 dataset were loaded before
training. What is the possible advantage by doing that?
Q7| Why didn’t I use any dropout in the model? Guess the reason.
Q8| In Figure 2.2, you may have noticed that the accuracies rise very fast from 0 to 0.9, but
significantly slow from 0.95 to 0.99. Explain the phenomenon.
Q9| Using the same hardware (which means you can’t upgrade the GPU, for example), how
can we speed up the learning process of the model, i.e. the rate of convergence?
3
2.3. Example: A practical model S. Qin
0 200 40**00 800 1000
Epoch
0.2
0.4
0.6
0.8
1.0
Model Accuracies
digi0
digi1
digi2
digi3
Figure 2.2: Accuracies through 1000 epochs in training
Q10| Since the accuracy for one digit is about 99%, the overall accuracy for a captcha is
0.994 ≈ 96%. This performance would be better than humans. Can you propose some
methods that can even further improve the performance?
Please note that, not all the questions above have a definite answer. You may also
need to do some research as the course doesn’t cover all the details in class. The source
code for training this model and the reference answers will be available on Moodle or
sent by email after all the students completing the submission.


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:IS3240代做、代寫c/c++,Java程序語言
  • 下一篇:DATA 2100代寫、代做Python語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                成人av高清在线| 成人性生交大片免费| 一区二区三区精品视频| 中文字幕 久热精品 视频在线 | 日本韩国一区二区三区| 成人综合婷婷国产精品久久蜜臀 | 中文字幕不卡一区| 久久亚洲一级片| 精品乱人伦小说| 精品免费视频一区二区| 欧美成人bangbros| 久久综合久久综合九色| 久久蜜桃av一区二区天堂| 欧美成人精品二区三区99精品| 精品国产一区二区国模嫣然| 91麻豆精品国产综合久久久久久| 欧美日韩卡一卡二| 欧美日韩精品电影| 日韩免费视频一区二区| www日韩大片| 国产精品色婷婷| 亚洲精品一二三区| 亚洲一卡二卡三卡四卡五卡| 亚洲国产综合色| 热久久国产精品| 国产成人福利片| 一本大道久久a久久精品综合| 欧美日韩综合不卡| 欧美一区二区三区视频在线| 欧美精品一区二区三区在线| 国产精品色哟哟| 亚洲国产乱码最新视频| 国产原创一区二区| 在线影院国内精品| 欧美不卡一区二区| 亚洲视频一区在线| 美美哒免费高清在线观看视频一区二区 | 看电影不卡的网站| 成人午夜私人影院| 欧美日韩你懂得| 精品精品欲导航| 亚洲丝袜另类动漫二区| 免费在线成人网| 9久草视频在线视频精品| 欧美精品一卡两卡| 亚洲婷婷综合久久一本伊一区| 亚洲国产精品一区二区久久| 国产美女在线观看一区| 欧美熟乱第一页| 国产精品色哟哟网站| 美女任你摸久久| 在线观看av不卡| 国产精品伦理一区二区| 蜜桃av一区二区三区电影| av亚洲精华国产精华精| 久久色在线观看| 日本不卡视频在线观看| 91福利在线导航| 亚洲天堂成人在线观看| 国产乱一区二区| 精品国产亚洲一区二区三区在线观看 | 国产福利91精品| 日韩一区二区影院| 一区二区三区免费在线观看| 国产麻豆精品一区二区| 在线电影国产精品| 亚洲午夜日本在线观看| 99riav一区二区三区| 国产精品久久久久久久岛一牛影视| 久久福利视频一区二区| 欧美一二三区在线| 欧美日韩国产高清一区二区三区| 午夜电影一区二区| 一本到不卡免费一区二区| 99久久99久久精品免费观看| 欧美不卡视频一区| 欧美aaa在线| 欧美一卡二卡三卡四卡| 天堂va蜜桃一区二区三区漫画版| 欧美性猛交xxxxxxxx| 一区二区三区精品| 欧美午夜理伦三级在线观看| 亚洲精品videosex极品| 在线视频中文字幕一区二区| 亚洲在线观看免费| 欧美午夜片在线观看| 肉肉av福利一精品导航| 欧美一区二区在线免费观看| 久久国产精品露脸对白| 国产亚洲精品aa| 成人午夜又粗又硬又大| 亚洲乱码国产乱码精品精98午夜| 色综合久久久网| 日韩中文欧美在线| 欧美α欧美αv大片| 成人影视亚洲图片在线| 亚洲女女做受ⅹxx高潮| 欧美写真视频网站| 蜜乳av一区二区| 国产清纯在线一区二区www| 99国产精品久久久久久久久久久 | 国产精品久久久久久亚洲伦| 欧美性大战久久久久久久蜜臀| 日韩电影一区二区三区四区| 精品免费国产二区三区 | 亚洲一区二区黄色| 欧美一区二区黄色| 国产精品一区免费视频| 日韩理论片网站| 日韩一区二区免费电影| 国产一区二区免费在线| 亚洲精品视频在线观看免费| 8x福利精品第一导航| 国产精品原创巨作av| 亚洲一区视频在线观看视频| 久久综合狠狠综合| 97精品视频在线观看自产线路二| 日本欧美一区二区三区乱码| 国产精品免费观看视频| 日韩欧美二区三区| 欧美午夜精品久久久久久超碰| 精品一区二区三区蜜桃| 亚洲国产精品自拍| 国产精品成人一区二区三区夜夜夜| 91精品国产入口在线| 色婷婷狠狠综合| 国产精品亚洲第一| 日韩**一区毛片| 艳妇臀荡乳欲伦亚洲一区| 国产亚洲一区二区三区| 91精品国产综合久久国产大片| 成人app在线观看| 国产精品88888| 激情综合色综合久久综合| 丝袜美腿亚洲色图| 亚洲乱码国产乱码精品精小说| 精品国产三级a在线观看| 欧美蜜桃一区二区三区| 色噜噜狠狠色综合中国| 丁香激情综合国产| 国产精品一区三区| 韩国毛片一区二区三区| 久久66热偷产精品| 美日韩黄色大片| 免费看黄色91| 久久99精品久久只有精品| 天堂va蜜桃一区二区三区| 亚洲一区在线播放| 一区二区三区日韩精品| 一区av在线播放| 亚洲情趣在线观看| 亚洲人精品午夜| 亚洲激情综合网| 亚洲欧美日韩一区二区三区在线观看| 日本一区二区三区高清不卡| 久久久久久久久久久久久久久99 | 91精品国产91热久久久做人人| 欧美日韩国产成人在线免费| 在线精品亚洲一区二区不卡| 91久久一区二区| 欧美精品久久一区| 日韩欧美一级精品久久| 精品福利在线导航| 久久婷婷国产综合精品青草| 久久久亚洲精品石原莉奈| 久久精品视频在线看| 久久久美女毛片| 国产精品国产三级国产普通话蜜臀 | 精品国内二区三区| 中文字幕av一区二区三区| 亚洲视频在线一区二区| 夜夜夜精品看看| 美女视频免费一区| 国产精品中文欧美| 99视频在线精品| 欧美日韩国产一级片| 日韩你懂的电影在线观看| 国产午夜精品理论片a级大结局| 中文字幕巨乱亚洲| 一区二区三区四区乱视频| 日本欧美一区二区在线观看| 国产一区二区伦理| 中文字幕不卡在线观看| 精品少妇一区二区三区| 日本免费新一区视频| 久久精品国产亚洲aⅴ| 国产91对白在线观看九色| 欧美无人高清视频在线观看| 欧美大尺度电影在线| 国产亚洲综合色| 亚洲精品国产精品乱码不99| 秋霞电影网一区二区| 国产东北露脸精品视频| 欧美日韩在线免费视频| 久久婷婷国产综合国色天香| 亚洲一区二区三区免费视频| 国产很黄免费观看久久| 欧美精品v国产精品v日韩精品| 欧美高清一级片在线观看| 日本不卡在线视频|