99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做IMSE7140、代寫Java/c++程序語言
代做IMSE7140、代寫Java/c++程序語言

時間:2024-11-03  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



IMSE7140 Assignment 2
Cracking CAPTCHAs
(20 points)
2.1 Brief Introduction
CAPTCHA or captcha is the acronym for “Completely Automated Public Turing test
to tell Computers and Humans Apart.” You must have been already familiar with it
because of its popularity in preventing bot attacks or spam everywhere. This assign ment, however, will guide you in implementing a deep learning model that can crack a
commercial-level captcha!
You deliverables for this assignment should include
1. A single PDF file answers.pdf with answers to all the questions explicitly marked
by “Q” with a serial number in this document, and
2. A train.py file to fulfill the programming task requirements marked by “PT.”
Of course, GPUs can facilitate your experiments—Don’t worry if you don’t have any,
the training requirement is deliberately simplified.
2.2 Training your model
The captchas we will crack is the multicolorcaptcha. Please pip install the exact version
1.2.0 (the current latest one) in case there might be any incompatibility for other releases.
We use the following codes to generate captchas.
1 from multicolorcaptcha import CaptchaGenerator
2
3 generator = CaptchaGenerator (0)
4 captcha = generator . gen_captcha_image ( difficult_level =0)
5 image = captcha . image
6 characters = captcha . characters
7 image . save ( f"{ characters }. png", "PNG")
In this snippet, CaptchaGenerator(0) configures the image size to 256 × 144 pixels,
and the difficult level is set to 0 so that the captchas only contains four 0–9 digits.
Please run the code snippet on your computer. If the captcha is successfully generated,
it should look like Figure 2.1.
1
2.2. Training your model S. Qin
Figure 2.1: Sample captcha with digits 0570
The training and the validation datasets are generated and attached in folders
capts train and capts val. For any machine learning problem, before you start to
devise a solution, it is always a good idea to observe the data and gain some intuition
first. You may immediately recognize some difficulties in this task:
• The digits have a set of random fonts and colors;
• Some certain range of random rotations are applied to the digits;
• Some line segments are randomly added to the image.
Such a task is considered impossible for traditional pattern recognition methods,
which may tackle the problem in a process like this: image thresholding, segmenta tion, handcrafted filter design, and pattern matching. We can conjecture that “filter
design” may fail in capturing useful features and “pattern matching” may have a poor
performance.
Fortunately, in the deep learning era, we can delegate the pattern or feature extrac tion job to deep neural networks. As introduced in the previous lecture “Deep Learning
for Computer Vision,” the slide “Understand feature maps: CAPTCHA recognition”
shows that a typical architecture for the task consists of two parts:
1. A backbone model to extract a feature map from the captcha image, and
2. A certain amount of prediction heads to interpret the feature map to readable
forms.
We will follow this architecture in this assignment. I encourage you to search open source solutions and learn from their experience. Here we follow this Kaggle post by
Ashadullah Shawon.
PT| Use capts train as the training dataset, capts val as the validation dataset, and Keras
as the deep learning framework, referring to Shawon’s solution, provide the training code
train.py that fulfills the following requirements. “Copy and paste” the codes from the
original post is allowed, as well as other AI-generated codes.
2
2.3. Example: A practical model S. Qin
1. The maximal number for epochs should be 10. Considering some students
will train the model by CPU, it is fair to limit the number of epochs, so the training
time for the model should be less than half an hour.
2. The accuracy for one digit should be no less than 30% after training for
10 epochs. The training outputs contain four accuracies respective to the four
digits. Since they are similar, you will only need to examine one of them. Keep in
mind that 30% for one digit indicates that the overall accuracy for the recognition
is only 0.3
4 = 0.81%. Such a low accuracy is not useful for cracking the captcha.
However, on the one hand, you may need a GPU to experiment on a practical
solution; on the other hand, a wild guess for a 0–9 digit has an accuracy of 10%,
so if your model’s accuracy can reach 30% after 10 epochs, it already indicates
the model learns from the training set. Hint: if the accuracy for one digit keeps
wandering around 0.1 but not increasing in the first two or three epochs, it is the
signal that you should modify somewhere in your code and try again.
3. The trained model should be saved as a file my model.keras after training.
Though, this model file my model.keras doesn’t need to be uploaded.
Q1| Can we convert the captcha images to grayscale at the preprocessing stage before train ing? What is the possible advantage by doing that? If any, can you point out the
possible disadvantage?
Q2| After the 10-epoch training, what are your accuracies of one digit, for the training and
the validation datasets respectively?
Q3| Is the accuracy for the validation dataset lower than that for the training dataset? What
are the possible reasons?
Q4| How can we improve the model’s performance on the validation dataset? List at least
three different measures.
2.3 Example: A practical model
To demonstrate that the backbone–heads architecture can actually solve the real-world
captcha, I trained a relatively large model by an Nvidia GeForce RTX 30** GPU.
You may find in attached the model file 099**0.9956.keras and the inference code
inference.py. The accuracies versus training epochs are shown in Figure 2.2. The
inference code reads a randomly generated captcha, inferences the model, and compares
the predicted results with the targets. You can press “n” for the next captcha or “q” to
quit the program. You may need to pip install keras cv to run the code.
Q5| What kind of backbone did I use in the model 099**0.9956.keras?
Q6| The backbone’s pre-trained weights on the ImageNet 2012 dataset were loaded before
training. What is the possible advantage by doing that?
Q7| Why didn’t I use any dropout in the model? Guess the reason.
Q8| In Figure 2.2, you may have noticed that the accuracies rise very fast from 0 to 0.9, but
significantly slow from 0.95 to 0.99. Explain the phenomenon.
Q9| Using the same hardware (which means you can’t upgrade the GPU, for example), how
can we speed up the learning process of the model, i.e. the rate of convergence?
3
2.3. Example: A practical model S. Qin
0 200 40**00 800 1000
Epoch
0.2
0.4
0.6
0.8
1.0
Model Accuracies
digi0
digi1
digi2
digi3
Figure 2.2: Accuracies through 1000 epochs in training
Q10| Since the accuracy for one digit is about 99%, the overall accuracy for a captcha is
0.994 ≈ 96%. This performance would be better than humans. Can you propose some
methods that can even further improve the performance?
Please note that, not all the questions above have a definite answer. You may also
need to do some research as the course doesn’t cover all the details in class. The source
code for training this model and the reference answers will be available on Moodle or
sent by email after all the students completing the submission.


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:IS3240代做、代寫c/c++,Java程序語言
  • 下一篇:DATA 2100代寫、代做Python語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                2021中文字幕一区亚洲| 久久久夜色精品亚洲| xvideos.蜜桃一区二区| 蜜臀av一区二区在线免费观看 | 99久久精品国产一区二区三区| 久久网这里都是精品| 成人综合在线视频| 一区二区三区欧美在线观看| 欧美日韩国产一区二区三区地区| 奇米色777欧美一区二区| 国产日韩亚洲欧美综合| 色狠狠av一区二区三区| 日本视频免费一区| 最新日韩av在线| 日韩一区二区免费高清| 成人国产精品视频| 日日嗨av一区二区三区四区| 精品国产乱码久久久久久牛牛| 成人在线视频一区二区| 婷婷久久综合九色综合绿巨人| 久久九九久精品国产免费直播| 欧美亚洲精品一区| 国产乱码精品一品二品| 日韩精品一卡二卡三卡四卡无卡| 国产精品久久久久三级| 欧美一级精品大片| 在线亚洲人成电影网站色www| 国产在线播放一区| 日韩精品电影在线观看| 中文字幕在线不卡| 久久久99久久| 日韩视频免费观看高清完整版在线观看| 成人午夜激情在线| 狠狠色综合色综合网络| 偷拍亚洲欧洲综合| 亚洲影视在线播放| 亚洲人成影院在线观看| 国产网红主播福利一区二区| 欧美一三区三区四区免费在线看| 91女厕偷拍女厕偷拍高清| 国产1区2区3区精品美女| 精品系列免费在线观看| 日本亚洲一区二区| 五月天亚洲婷婷| 亚洲综合激情另类小说区| 成人欧美一区二区三区| 国产精品视频看| 国产精品每日更新在线播放网址 | 亚洲欧美另类小说| 欧美极品另类videosde| 日韩精品一区二区三区四区| 欧美高清视频一二三区 | 国产精品灌醉下药二区| 国产网站一区二区| 国产精品三级av| 国产精品久久久久久久久晋中| 国产欧美视频在线观看| 欧美国产日韩精品免费观看| 国产精品久久久久久久久免费丝袜| 国产精品无人区| |精品福利一区二区三区| 亚洲精品成人悠悠色影视| 亚洲一区av在线| 青青草国产精品97视觉盛宴| 日本视频中文字幕一区二区三区| 激情综合一区二区三区| 国产一区二区调教| 成人av手机在线观看| 91视频91自| 欧美探花视频资源| 日韩欧美综合一区| 国产欧美视频一区二区三区| 亚洲免费在线观看视频| 亚洲18色成人| 麻豆国产欧美日韩综合精品二区 | 日韩主播视频在线| 久久99国产精品尤物| 成人黄页毛片网站| 欧美视频在线不卡| 精品av综合导航| 国产精品短视频| 丝袜国产日韩另类美女| 国产福利一区二区三区在线视频| 91亚洲国产成人精品一区二三| 欧美日韩成人综合在线一区二区 | 亚洲三级在线免费观看| 亚洲成人你懂的| 国产成人综合网站| 欧美色区777第一页| 国产视频一区在线播放| 亚洲成人中文在线| 国产精品2024| 欧美日韩精品专区| 国产亲近乱来精品视频| 亚洲成av人在线观看| 成人av免费在线| 久久蜜臀精品av| 日韩精品一二三四| 在线免费观看一区| 国产精品免费观看视频| 无吗不卡中文字幕| 色噜噜狠狠色综合欧洲selulu | 欧美一二三在线| 亚洲色图在线播放| 国产成人av电影| 日韩欧美国产麻豆| 亚洲图片欧美视频| 97成人超碰视| 国产精品久久久久久久第一福利| 韩国三级在线一区| 欧美一区二区三区电影| 五月婷婷色综合| 欧美日韩国产成人在线91| 一区二区三区日韩欧美精品| 成人av网在线| 国产精品无人区| 成人国产精品免费网站| 中文字幕欧美日韩一区| 国产福利91精品一区| 精品国产99国产精品| 麻豆一区二区三区| 91精品欧美一区二区三区综合在 | 秋霞影院一区二区| 91精品国产色综合久久ai换脸| 亚洲成人免费在线观看| 欧美军同video69gay| 性欧美疯狂xxxxbbbb| 欧美日韩成人综合天天影院 | 中文字幕在线视频一区| 国产精品99久久久久久久vr| 日韩久久久精品| 国产尤物一区二区| 中文字幕精品三区| 91蜜桃免费观看视频| 亚洲男同性恋视频| 欧美色中文字幕| 亚洲一区在线看| 911精品国产一区二区在线| 天堂成人国产精品一区| 在线不卡的av| 国产在线不卡一区| 亚洲色图视频网站| 欧美三级电影一区| 久久精品72免费观看| 欧美国产视频在线| 色婷婷激情久久| 久久国产剧场电影| 中文字幕一区二区三区蜜月| 91丝袜美腿高跟国产极品老师| 亚洲一二三区在线观看| 日韩一区二区在线看| 丁香六月综合激情| 亚洲大片精品永久免费| 国产亚洲成aⅴ人片在线观看| 91小视频免费看| 日日夜夜免费精品| 国产精品久久久久aaaa樱花| 欧美日韩亚洲综合在线| 国精品**一区二区三区在线蜜桃| 中文字幕在线观看不卡视频| 91精品国产色综合久久不卡蜜臀| 不卡电影一区二区三区| 免费不卡在线观看| 亚洲欧美另类综合偷拍| 欧美大胆一级视频| 91福利在线导航| 国产精品影视网| 婷婷国产在线综合| 国产精品乱码一区二区三区软件| 91麻豆精品国产自产在线| 日韩精品一级中文字幕精品视频免费观看| 久久久久久久久久美女| 欧美日韩视频在线观看一区二区三区 | 老司机精品视频在线| 亚洲人成伊人成综合网小说| 日韩欧美成人一区| 欧美午夜不卡视频| 91亚洲精品久久久蜜桃| 国产一区二区三区免费在线观看| 亚洲国产日日夜夜| 亚洲人成在线播放网站岛国| 久久综合九色综合97_久久久| 欧美电影影音先锋| 在线影院国内精品| 95精品视频在线| 国产**成人网毛片九色| 国产在线播放一区| 精品在线播放免费| 狠狠色伊人亚洲综合成人| 五月天激情综合| 亚洲一区二区在线播放相泽| 亚洲欧洲无码一区二区三区| 国产女主播一区| 国产亚洲一二三区| 久久女同互慰一区二区三区| 日韩一区二区三区视频| 在线91免费看| 日韩一区二区视频在线观看| 日韩三级视频中文字幕| 日韩视频在线观看一区二区|