99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做IMSE7140、代寫Java/c++程序語言
代做IMSE7140、代寫Java/c++程序語言

時間:2024-11-03  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



IMSE7140 Assignment 2
Cracking CAPTCHAs
(20 points)
2.1 Brief Introduction
CAPTCHA or captcha is the acronym for “Completely Automated Public Turing test
to tell Computers and Humans Apart.” You must have been already familiar with it
because of its popularity in preventing bot attacks or spam everywhere. This assign ment, however, will guide you in implementing a deep learning model that can crack a
commercial-level captcha!
You deliverables for this assignment should include
1. A single PDF file answers.pdf with answers to all the questions explicitly marked
by “Q” with a serial number in this document, and
2. A train.py file to fulfill the programming task requirements marked by “PT.”
Of course, GPUs can facilitate your experiments—Don’t worry if you don’t have any,
the training requirement is deliberately simplified.
2.2 Training your model
The captchas we will crack is the multicolorcaptcha. Please pip install the exact version
1.2.0 (the current latest one) in case there might be any incompatibility for other releases.
We use the following codes to generate captchas.
1 from multicolorcaptcha import CaptchaGenerator
2
3 generator = CaptchaGenerator (0)
4 captcha = generator . gen_captcha_image ( difficult_level =0)
5 image = captcha . image
6 characters = captcha . characters
7 image . save ( f"{ characters }. png", "PNG")
In this snippet, CaptchaGenerator(0) configures the image size to 256 × 144 pixels,
and the difficult level is set to 0 so that the captchas only contains four 0–9 digits.
Please run the code snippet on your computer. If the captcha is successfully generated,
it should look like Figure 2.1.
1
2.2. Training your model S. Qin
Figure 2.1: Sample captcha with digits 0570
The training and the validation datasets are generated and attached in folders
capts train and capts val. For any machine learning problem, before you start to
devise a solution, it is always a good idea to observe the data and gain some intuition
first. You may immediately recognize some difficulties in this task:
• The digits have a set of random fonts and colors;
• Some certain range of random rotations are applied to the digits;
• Some line segments are randomly added to the image.
Such a task is considered impossible for traditional pattern recognition methods,
which may tackle the problem in a process like this: image thresholding, segmenta tion, handcrafted filter design, and pattern matching. We can conjecture that “filter
design” may fail in capturing useful features and “pattern matching” may have a poor
performance.
Fortunately, in the deep learning era, we can delegate the pattern or feature extrac tion job to deep neural networks. As introduced in the previous lecture “Deep Learning
for Computer Vision,” the slide “Understand feature maps: CAPTCHA recognition”
shows that a typical architecture for the task consists of two parts:
1. A backbone model to extract a feature map from the captcha image, and
2. A certain amount of prediction heads to interpret the feature map to readable
forms.
We will follow this architecture in this assignment. I encourage you to search open source solutions and learn from their experience. Here we follow this Kaggle post by
Ashadullah Shawon.
PT| Use capts train as the training dataset, capts val as the validation dataset, and Keras
as the deep learning framework, referring to Shawon’s solution, provide the training code
train.py that fulfills the following requirements. “Copy and paste” the codes from the
original post is allowed, as well as other AI-generated codes.
2
2.3. Example: A practical model S. Qin
1. The maximal number for epochs should be 10. Considering some students
will train the model by CPU, it is fair to limit the number of epochs, so the training
time for the model should be less than half an hour.
2. The accuracy for one digit should be no less than 30% after training for
10 epochs. The training outputs contain four accuracies respective to the four
digits. Since they are similar, you will only need to examine one of them. Keep in
mind that 30% for one digit indicates that the overall accuracy for the recognition
is only 0.3
4 = 0.81%. Such a low accuracy is not useful for cracking the captcha.
However, on the one hand, you may need a GPU to experiment on a practical
solution; on the other hand, a wild guess for a 0–9 digit has an accuracy of 10%,
so if your model’s accuracy can reach 30% after 10 epochs, it already indicates
the model learns from the training set. Hint: if the accuracy for one digit keeps
wandering around 0.1 but not increasing in the first two or three epochs, it is the
signal that you should modify somewhere in your code and try again.
3. The trained model should be saved as a file my model.keras after training.
Though, this model file my model.keras doesn’t need to be uploaded.
Q1| Can we convert the captcha images to grayscale at the preprocessing stage before train ing? What is the possible advantage by doing that? If any, can you point out the
possible disadvantage?
Q2| After the 10-epoch training, what are your accuracies of one digit, for the training and
the validation datasets respectively?
Q3| Is the accuracy for the validation dataset lower than that for the training dataset? What
are the possible reasons?
Q4| How can we improve the model’s performance on the validation dataset? List at least
three different measures.
2.3 Example: A practical model
To demonstrate that the backbone–heads architecture can actually solve the real-world
captcha, I trained a relatively large model by an Nvidia GeForce RTX 30** GPU.
You may find in attached the model file 099**0.9956.keras and the inference code
inference.py. The accuracies versus training epochs are shown in Figure 2.2. The
inference code reads a randomly generated captcha, inferences the model, and compares
the predicted results with the targets. You can press “n” for the next captcha or “q” to
quit the program. You may need to pip install keras cv to run the code.
Q5| What kind of backbone did I use in the model 099**0.9956.keras?
Q6| The backbone’s pre-trained weights on the ImageNet 2012 dataset were loaded before
training. What is the possible advantage by doing that?
Q7| Why didn’t I use any dropout in the model? Guess the reason.
Q8| In Figure 2.2, you may have noticed that the accuracies rise very fast from 0 to 0.9, but
significantly slow from 0.95 to 0.99. Explain the phenomenon.
Q9| Using the same hardware (which means you can’t upgrade the GPU, for example), how
can we speed up the learning process of the model, i.e. the rate of convergence?
3
2.3. Example: A practical model S. Qin
0 200 40**00 800 1000
Epoch
0.2
0.4
0.6
0.8
1.0
Model Accuracies
digi0
digi1
digi2
digi3
Figure 2.2: Accuracies through 1000 epochs in training
Q10| Since the accuracy for one digit is about 99%, the overall accuracy for a captcha is
0.994 ≈ 96%. This performance would be better than humans. Can you propose some
methods that can even further improve the performance?
Please note that, not all the questions above have a definite answer. You may also
need to do some research as the course doesn’t cover all the details in class. The source
code for training this model and the reference answers will be available on Moodle or
sent by email after all the students completing the submission.


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:IS3240代做、代寫c/c++,Java程序語言
  • 下一篇:DATA 2100代寫、代做Python語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          欧美激情1区2区| 99精品久久久| 欧美日本不卡视频| 亚洲欧美色一区| 亚洲国产免费看| 国产亚洲制服色| 国产精品久久久久久妇女6080| 久久免费精品视频| 午夜精品福利在线观看| 亚洲精品韩国| 亚洲第一页在线| 国产主播精品| 国产欧美日韩激情| 国产精品高精视频免费| 欧美精品福利视频| 久久一区二区三区av| 久久激情五月激情| 亚洲欧美精品在线观看| 在线亚洲自拍| 99热在线精品观看| 亚洲人成精品久久久久| 亚洲国产精品va在线看黑人动漫 | 亚洲欧美日韩国产综合| a4yy欧美一区二区三区| 91久久黄色| 亚洲人成欧美中文字幕| 精品成人在线观看| 国内欧美视频一区二区| 国模精品一区二区三区色天香| 国产日韩欧美在线看| 国产午夜精品一区理论片飘花| 国产精品视频久久久| 国产精品乱码一区二区三区 | 亚洲性视频h| aⅴ色国产欧美| 一区二区三区精品视频| 中文亚洲视频在线| 亚洲综合好骚| 久久精品卡一| 欧美国产一区二区在线观看| 欧美激情综合在线| 欧美视频导航| 国产日产亚洲精品| 国产曰批免费观看久久久| 国产视频精品网| 亚洲高清免费| 亚洲影音一区| 欧美亚洲三区| 麻豆91精品91久久久的内涵| 欧美高清在线视频观看不卡| 欧美精品一区在线| 国产精品视频专区| 狠狠色狠狠色综合系列| 亚洲欧洲一区二区三区| 亚洲一区精品在线| 久久另类ts人妖一区二区| 免费成人黄色av| 欧美性一区二区| 影音先锋国产精品| 中国亚洲黄色| 久久亚洲春色中文字幕| 欧美日韩福利视频| 狠狠久久婷婷| 亚洲精选中文字幕| 欧美在线在线| 欧美午夜美女看片| 亚洲国产精品久久久久秋霞影院 | 亚洲精品三级| 欧美亚洲一级片| 欧美精品乱人伦久久久久久| 国产精自产拍久久久久久| 亚洲国产高清一区| 先锋资源久久| 欧美午夜不卡视频| 亚洲国产精品v| 欧美在线关看| 欧美视频一区二| 亚洲黄色片网站| 久久久久网站| 国产欧美日韩专区发布| 亚洲无玛一区| 欧美日韩天堂| 亚洲人在线视频| 噜噜噜噜噜久久久久久91| 国产美女精品免费电影| 亚洲尤物在线视频观看| 欧美视频日韩视频| 日韩亚洲欧美中文三级| 欧美成人嫩草网站| 一区二区三区在线观看视频| 欧美伊人久久久久久久久影院 | 中文国产成人精品久久一| 欧美成人精品高清在线播放| 在线播放一区| 欧美成人精品三级在线观看| 激情综合在线| 六月天综合网| 亚洲国产精品视频一区| 欧美成年人视频网站欧美| 在线观看国产一区二区| 久热re这里精品视频在线6| 精品91久久久久| 久久黄色影院| 国产亚洲精品资源在线26u| 欧美一区二区三区男人的天堂| 国产精品自在线| 久久精品亚洲乱码伦伦中文| 国产有码在线一区二区视频| 久久只精品国产| 亚洲精品1区| 欧美日韩综合精品| 亚洲女同性videos| 国产专区欧美专区| 久久婷婷一区| 日韩一级网站| 国产日韩欧美夫妻视频在线观看| 久久精品人人做人人爽| 黄色亚洲大片免费在线观看| 欧美岛国激情| 亚洲欧美乱综合| 伊人成人在线视频| 欧美日韩八区| 欧美一区二区三区婷婷月色| 一区在线播放| 欧美视频二区| 久久一二三四| 亚洲一区二区三区成人在线视频精品| 国产精品一区一区三区| 免费观看亚洲视频大全| 亚洲专区国产精品| 一区二区视频免费完整版观看| 欧美精品一区在线发布| 先锋影院在线亚洲| 亚洲精品免费在线播放| 国产精品国产三级国产普通话蜜臀 | 欧美日韩在线播放一区| 久久精品在这里| 一二三区精品| 伊人成综合网伊人222| 欧美色综合网| 免费观看一级特黄欧美大片| 午夜免费日韩视频| 亚洲人成网站在线观看播放| 国产视频久久久久久久| 欧美性生交xxxxx久久久| 免费在线国产精品| 欧美伊人久久| 亚洲综合大片69999| 91久久精品www人人做人人爽 | 午夜在线精品| 亚洲一级特黄| 99热这里只有成人精品国产| 亚洲第一中文字幕在线观看| 国产日韩欧美精品| 国产精品嫩草99a| 欧美午夜精品久久久久免费视 | 亚洲精品久久久久久久久| 国产在线精品一区二区夜色| 国产精品mv在线观看| 欧美全黄视频| 欧美日韩福利视频| 欧美国产激情二区三区| 久久久av网站| 久久久亚洲影院你懂的| 久久九九久久九九| 久久人人爽国产| 久久亚洲免费| 老司机成人在线视频| 久久激情一区| 美女精品在线观看| 美女黄毛**国产精品啪啪| 另类综合日韩欧美亚洲| 欧美成人免费大片| 欧美激情久久久久| 欧美日韩国产小视频在线观看| 欧美激情一区二区三区在线视频观看| 牛夜精品久久久久久久99黑人 | 亚洲福利在线观看| 亚洲国产清纯| 一本久久a久久免费精品不卡| 99视频国产精品免费观看| 亚洲视频中文| 性色一区二区| 美女免费视频一区| 欧美黑人多人双交| 欧美另类videos死尸| 欧美视频在线观看免费网址| 国产精品久久综合| 国精品一区二区| 黄页网站一区| 日韩视频专区| 欧美一区二区三区喷汁尤物| 久久精品国产清高在天天线| 欧美成年网站| 国产精品v日韩精品v欧美精品网站| 国产伦精品一区二区三区视频黑人| 国产综合av| 亚洲国产精品久久久久秋霞不卡| 一本色道久久88综合亚洲精品ⅰ| 欧美一区二区三区免费视|