99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫MATH3030、代做c/c++,Java程序
代寫MATH3030、代做c/c++,Java程序

時間:2025-03-22  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



MATH3030: Coursework, Spring 2025
17/03/2025
• If you are a MATH4068 student, please stop reading and go and find the coursework for
MATH4068. This assessment is for MATH3030 students only.
• This coursework is ASSESSED and is worth 20% of the total module mark. It is split into two questions,
of equal weight.
• Deadline: Coursework should be submitted via the coursework submission area on the Moodle page
by Wednesday 30 April, 10am.
• Do not spend more time on this project than it merits - it is only worth 20% of the module mark.
• Format: Please submit a single pdf document. The easiest way to do this is to use R Markdown or
Quarto in R Studio. Do not submit raw markdown or R code - raw code (i.e. with no output,
plots, analysis etc) will receive a mark of 0.
• As this work is assessed, your submission must be entirely your own work (see the University’s policy
on Academic Misconduct).
• Submissions up to five working days late will be subject to a penalty of 5% of the maximum mark
per working day. Deadline extensions due to Support Plans and Extenuating Circumstances can be
requested according to School and University policies, as applicable to this module. Because of these
policies, solutions (where appropriate) and feedback cannot normally be released earlier than 10 working
days after the main cohort submission deadline.
• Report length: Your solution should not be too long. You should aim to convey the important
details in a way that is easy to follow, but not excessively long. Avoid repetition and long print-outs of
uninteresting numerical output.
• Please post any questions about the coursework on the Moodle discussion boards. This will ensure that
all students receive the same level of support. Please be careful not to ask anything on the discussion
boards that reveals any part of your solution to other students.
• I will be available to discuss the coursework at our Tuesday or Thursday sessions during the semester. I
will not be meeting students 1-1 to discuss the coursework outside of these times.
Plagiarism and Academic Misconduct For all assessed coursework it is important that you submit
your own work. Some information about plagiarism is given on the Moodle webpage.
Grading The two questions carry equal weight, and both will be marked out of 10. You will be assessed on
both the technical content (use of R, appropriate choice of method) and on the presentation and interpretation
of your results.
1
Coursework
The file UN.csv is available on Moodle, and contains data from the United Nations about 141 different
countries from 1952 to 2007. This includes the GDP per capita, the life expectancy, and the population.
Load the data into R, and extract the three different types of measurement using the commands below:
UN <- read.csv('UN.csv')
gdp <- UN[,3:14] # The GDP per capita.
years <- seq(1952, 2007,5)
colnames(gdp) <- years
rownames(gdp) <- UN[,2]
lifeExp <- UN[,15:26] # the life expectancy
colnames(lifeExp) <- years
rownames(lifeExp) <- UN[,2]
popn <- UN[,27:38] # the population size
colnames(popn) <- years
rownames(popn) <- UN[,2]
In this project, you will analyse these data using the methods we have looked at during the module.
Question 1
Exploratory data analysis
Begin by creating some basic exploratory data analysis plots, showing how the three variables (GDP, life
expectancy, population) have changed over the past 70 years. For example, you could show should how the
average life expectancy and GDP per capita for each continent has changed through time. Note that there
are many different things you could try - please pick a small number of plots which you think are most
informative.
Principal component analysis
Carry out principal component analysis of the GDP and life expectancy data. Analyse the two variable types
independently (i.e. do PCA on GDP, then on life-expectancy). Things to consider include whether you use
the sample covariance or correlation matrix, how many principal components you would choose to retain in
your analysis, and interpretation of the leading principal components.
Use your analysis to produce scatter plots of the PC scores for GDP and life expectancy, labelling the names
of the countries and colouring the data points by continent. You can also plot the first PC score for life
expectancy against the first PC score for GDP (again colouring and labelling your plot). Briefly discuss these
plots, explaining what they illustrate for particular countries.
Canonical correlation analysis
Perform CCA using log(GDP) and life expectancy as the two sets of variables. Provide a scatter plot of the
first pair of CC variables, labelling and colouring the points. What do you conclude from your canonical
correlation analysis? What has been the effect of using log(gdp) rather than gdp as used in the PCA?
Multidimensional scaling
Perform multidimensional scaling using the combined dataset of log(GDP), life expectancy, and log(popn),
i.e., using
UN.transformed <- cbind(log(UN[,3:14]), UN[,15:26], log(UN[,27:38]))
Find and plot a 2-dimensional representation of the data. As before, colour each data point by the continent
it is on. Discuss the story told by this plot in comparison with what you have found previously.
2
Question 2
Linear discriminant analysis
Use linear discriminant analysis to train a classifier to predict the continent of each country using gdp,
lifeExp, and popn from 1952-2007. Test the accuracy of your model by randomly splitting the data into test
and training sets, and calculate the predictive accuracy on the test set.
Clustering
Apply a selection of clustering methods to the GDP and life expectancy data. Choose an appropriate number
of clusters using a suitable method, and discuss your results. For example, do different methods find similar
clusters, is there a natural interpretation for the clusters etc? Note that you might want to consider scaling
the data before applying any method.
UN.scaled <- UN[,1:26]
UN.scaled[,3:26] <- scale(UN[,3:26])
Linear regression
Finally, we will look at whether the life expectancy in 2007 for each country can be predicted by a country’s
GDP over the previous 55 years. Build a model to predict the life expectancy of a country in 2007 from its
GDP values (or from log(gdp)). Explain your choice of regression method, and assess its accuracy. You
may want to compare several different regression methods, and assess whether it is better to use the raw gdp
values or log(gdp) as the predictors.


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:CSC3050代做、Java/Python編程代寫
  • 下一篇:悠悠分期全國客服電話-悠悠分期24小時人工服務熱線
  • ·COMP 5076代寫、代做Python/Java程序
  • ·代寫COP3503、代做Java程序設計
  • ·COMP3340代做、代寫Python/Java程序
  • ·COM1008代做、代寫Java程序設計
  • ·MATH1053代做、Python/Java程序設計代寫
  • ·CS209A代做、Java程序設計代寫
  • ·ITC228編程代寫、代做Java程序語言
  • ·PROG2004代做、Java程序設計代寫
  • ·代寫Tic-Tac-To: Markov Decision、代做java程序語言
  • ·CP1407代做、代寫c/c++,Java程序
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                色乱码一区二区三区88| 欧美日韩中文国产| 欧美肥妇bbw| 久久国产精品区| 欧美国产日韩a欧美在线观看 | 日本欧美韩国一区三区| 这里是久久伊人| 懂色av噜噜一区二区三区av| 亚洲欧美福利一区二区| 日韩欧美亚洲另类制服综合在线| 精品一区免费av| 亚洲综合成人在线视频| 日韩精品一区二区三区视频| 国产99久久久国产精品免费看| 亚洲免费在线电影| 精品国产乱码久久久久久夜甘婷婷 | 国产亚洲女人久久久久毛片| 成人高清伦理免费影院在线观看| 综合久久久久综合| 日韩欧美三级在线| 欧美视频一区在线观看| 激情欧美一区二区| 亚洲欧洲另类国产综合| 4hu四虎永久在线影院成人| 高清国产一区二区| 国产制服丝袜一区| 麻豆视频观看网址久久| 亚洲一区二区偷拍精品| 国产欧美日韩综合| 欧美va亚洲va香蕉在线| 欧美日韩午夜精品| 99视频热这里只有精品免费| 久久精品国产一区二区三 | 中文久久乱码一区二区| 日韩欧美国产麻豆| 欧美日韩一区二区三区在线| 99精品国产视频| 国产一区亚洲一区| 韩国精品久久久| 开心九九激情九九欧美日韩精美视频电影 | 亚洲卡通欧美制服中文| 久久精品视频在线看| 日韩午夜精品电影| 日韩精品一区二| 日韩精品一区二区在线观看| 91精品国产欧美日韩| 欧美视频中文字幕| 欧美性受极品xxxx喷水| 日本丰满少妇一区二区三区| 91在线porny国产在线看| 成人a免费在线看| av电影天堂一区二区在线| 成人性视频免费网站| 国产精品一区二区三区网站| 国产美女久久久久| 播五月开心婷婷综合| 国产精品一区二区在线观看网站| 成人小视频在线| 97se亚洲国产综合自在线| 色哟哟亚洲精品| 欧美日韩一区在线| 欧美一区二区人人喊爽| 2017欧美狠狠色| 国产精品丝袜一区| 亚洲最色的网站| 老司机免费视频一区二区三区| 国产一级精品在线| 91麻豆文化传媒在线观看| 欧美日韩视频专区在线播放| 日韩午夜小视频| 欧美国产综合色视频| 亚洲日本乱码在线观看| 亚洲成人黄色影院| 精品一二三四在线| 日本丶国产丶欧美色综合| 欧美日韩国产综合视频在线观看| 日韩欧美一区在线| 国产精品免费人成网站| 亚洲r级在线视频| 国产成人a级片| 欧美男人的天堂一二区| 精品国产百合女同互慰| 亚洲精品免费在线观看| 久久成人免费日本黄色| 色综合色综合色综合 | 亚洲精品videosex极品| 日韩av不卡一区二区| 国产高清成人在线| 欧美日韩亚洲综合在线| 国产日产欧美一区| 五月婷婷久久综合| 成人午夜又粗又硬又大| 555www色欧美视频| 中文字幕在线不卡一区二区三区| 日韩国产高清影视| 色国产综合视频| 欧美激情一区二区三区在线| 亚洲午夜在线电影| 91亚洲资源网| 欧美激情综合在线| 久久69国产一区二区蜜臀| 欧美性视频一区二区三区| 国产欧美日本一区视频| 理论片日本一区| 欧美乱妇15p| 亚洲国产精品久久久男人的天堂 | 欧美日韩美女一区二区| 欧美激情在线一区二区三区| 麻豆精品国产91久久久久久| 欧美亚洲国产一区二区三区| 国产欧美一区二区精品性色超碰 | 亚洲一区在线免费观看| 99在线精品一区二区三区| 久久综合色一综合色88| 青青草原综合久久大伊人精品| 日本丶国产丶欧美色综合| 国产精品国产三级国产| 成人一二三区视频| 亚洲欧洲精品一区二区精品久久久| 国产高清精品网站| 国产欧美精品国产国产专区| 国产大陆亚洲精品国产| 久久久久国产精品免费免费搜索| 久久国产免费看| 久久综合五月天婷婷伊人| 国产一区二区三区免费观看| 精品欧美一区二区在线观看| 久久草av在线| 国产午夜精品理论片a级大结局| 极品美女销魂一区二区三区| 精品日韩欧美在线| 国产精品一二二区| 中文字幕一区二区不卡| 91视视频在线直接观看在线看网页在线看 | 88在线观看91蜜桃国自产| 亚洲一区二区视频| 欧美一区二区三区视频免费播放 | 精品国一区二区三区| 国产麻豆欧美日韩一区| 欧美精品一区二区三区蜜桃 | 国产精品美女久久久久aⅴ| 成人网男人的天堂| 亚洲黄色录像片| 欧美一区二区三区免费在线看| 国产在线看一区| 国产精品进线69影院| 欧美手机在线视频| 国内精品第一页| 亚洲欧美偷拍卡通变态| 欧美日韩国产综合草草| 国产在线视视频有精品| 亚洲精品久久久蜜桃| 精品国精品国产| 欧美午夜精品电影| 国产精品一二三区| 偷拍亚洲欧洲综合| 国产精品久久777777| 欧美日本视频在线| 高清视频一区二区| 日韩国产精品久久| 亚洲精品高清在线观看| 26uuu精品一区二区| 欧美最猛黑人xxxxx猛交| 国产一区二区美女诱惑| 亚洲图片欧美视频| 国产精品美女久久久久aⅴ国产馆| 欧美电影在线免费观看| 成人午夜视频福利| 久久精品72免费观看| 亚洲大片精品永久免费| 亚洲国产电影在线观看| 日韩欧美激情在线| 欧美日韩在线电影| av一区二区久久| 久久精品国产久精国产| 亚洲国产一区二区视频| 国产精品国产三级国产| 久久综合色鬼综合色| 欧美老女人第四色| 欧美三级韩国三级日本三斤| 成人国产一区二区三区精品| 蜜桃av噜噜一区| 日韩av一级片| 亚洲一卡二卡三卡四卡无卡久久| 国产欧美视频一区二区| 精品国产区一区| 精品噜噜噜噜久久久久久久久试看 | 欧美日韩国产综合一区二区三区 | 成人小视频免费在线观看| 久久爱另类一区二区小说| 日韩精彩视频在线观看| 亚洲一区二区三区中文字幕| 亚洲日本欧美天堂| 亚洲一线二线三线视频| 亚洲免费观看高清| 亚洲影院久久精品| 五月天久久比比资源色| 午夜精品在线看| 蜜臀久久久久久久| 另类专区欧美蜜桃臀第一页|