99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫AI3013編程、代做Python設計程序
代寫AI3013編程、代做Python設計程序

時間:2025-04-09  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



AI3013 Machine Learning Course Project
Description:
This is a GROUP project (each group should have 4-6 students), which aims at applying 
machine learning models as well as machine learning techniques (including but not limited 
to those covered in our lectures) to solve complex real-world tasks using Python.
Notice: This project should differ from the one you are undertaking in the Machine Learning 
Workshop Course.
Notice on Deep Learning Models:
You may decide to work on Deep learning models, and since our course mainly focus on 
machine learning models and techniques, deep learning model not be considered as more 
superior than other machine learning models if you just repeat a model that is designed by 
others. Also, training deep learning models can be very time consuming, so make sure you have 
the necessary computing resources.
Project Requirement:
Problem Selection:
• Choose a real-world problem from a domain of interest (e.g., healthcare, finance, 
image recognition, natural language processing, etc.).
• Describe the problem, including data sources and the type of machine learning model 
that will be applied (e.g., regression, classification, clustering, etc.).
Dataset Selection:
• Choose a dataset from public repositories (e.g., UCI Machine Learning Repository, 
Kaggle) suitable for this topic.
• Ensure the dataset has a sufficient number of samples and features to allow for 
meaningful analysis and model comparison.
• Apply appropriate data preprocessing steps (e.g., handling missing values, encoding 
categorical features, scaling).
Model Theory and Implementation:
• Select and implement at least 2 machine learning models for comparison.
• Provide a comprehensive explanation of the theoretical background of the chosen 
models (e.g., loss functions, optimization techniques, and assumptions).
• Discuss the strengths and weaknesses of the chosen models.
• Include mathematical derivations where relevant (e.g., gradient descent for linear 
regression).
• Implement the selected models From Scratch without using any existing machine 
learning libraries (e.g., scikit-learn, TensorFlow, Keras, etc.). The implementation 
should be done in Python using only basic libraries such as NumPy, Pandas, and 
Matplotlib.
Model Evaluation:
• Evaluate each model using suitable metrics (e.g., accuracy, precision, recall, F1 score, 
RMSE) for the problem.
• Use cross-validation to ensure model robustness and avoid overfitting.
• Analyze the behavior of the models based on the dataset, including bias-variance 
trade-offs, overfitting, and underfitting.
Analysis and Comparison:
• Compare the models in terms of:
o Performance (accuracy, precision, etc.).
o Computational complexity (training time, memory usage).
o Suitability for the dataset (e.g., which model performs best, why).
• Provide a comparison of the models' performances with appropriate visualizations 
(e.g., bar plots or tables comparing metrics).
• Discuss how the assumptions of each model affect its suitability for the problem.
Submission Requirement:
Upon completion, each group must submit the following materials:
1. Progress report
a) Abstract
b) Introduction: problem statement, motivation and background of the topic
c) Related works and existing techniques of the topic
d) Methodology
e) Progress/Current Status
f) Next Steps and Plan for Completion
2. Project report, your report should contain but not limited to the followingcontent:
a) Abstract
b) Introduction: problem statement, motivation and background of the topic
c) Related works and existing techniques of the topic
d) Methodology
e) Experimental study and result analysis
f) Future work and conclusion
g) References
h) Contribution of each team member
3. Link and description to the Dataset and the implementation code.
4. Your final report should be a minimum of 9 pages and a maximum of 12 pages
5. For the final report, the similarity check Must Not exceed 20%, and the AI generation 
content check Must Not exceed 25%.
6. Put all files (including: source code, presentation ppt and project report) into a ZIP file, 
then submit it on iSpace.
Deadlines:
 Team Information should be submitted by the end of Week 3.
 The Progress Report should be submitted by the end of Week 10.
 The Presentation will be arranged in Weeks 13 and 14 of this semester.
 Final Project Report should be submitted by Friday of Week 15 (May.23.2025).
Assessment:
In general, projects will be evaluated based on:
 Significance. (Did the authors choose an interesting or a “real" problem to work on, or 
only a small “toy" problem? Is this work likely to be useful and/or haveimpact?)
 The technical quality of the work. (i.e., Does the technical material make sense? Are 
the things tried reasonable? Are the proposed algorithms or applications clever and 
interesting? Do the student convey novel insight about the problem and/or algorithms?)
 The novelty of the work. (Do you have any novel contributions, e.g., new model, new 
technique, new method, etc.? Is this project applying a common technique to a well studied problem, or is the problem or method relatively unexplored?)
 The workload of the project. (The workload of your project may depend on but not 
limit to the following aspects: the complexity of the problem; the complexity of your 
method; the complexity of the dataset; do you test your model on one or multiple 
datasets? do you conduct a thorough experimental analysis on your model?)
Evaluation Percentage:
 Progress Report: 5%
 Final Report: 40%
 Presentation: 40% (Each group will have 15-20 minutesfor presentation, and
each student must present no less than 3 minutes)
 Code: 15%
It is YOUR responsibility to make sure:
 Your submitted files can be correctly opened. 
 Your code can be compiled and run. 
Late submission = 0; Plagiarism (cheating) = F

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代寫APSC 142、代做C/C++程序設計
  • 下一篇:DTS101TC代做、代寫Python語言程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                人禽交欧美网站| 亚洲欧洲在线观看av| 国产一区二区日韩精品| 五月天视频一区| 亚洲综合成人在线| 亚洲少妇最新在线视频| 国产精品免费视频一区| 国产蜜臀av在线一区二区三区| 欧美不卡在线视频| 欧美成人三级电影在线| 欧美一区二区三区四区视频| 欧美日韩国产综合一区二区| 日本道色综合久久| 欧美人与性动xxxx| 日韩欧美高清一区| 亚洲精品在线电影| 久久精品一区蜜桃臀影院| 久久久另类综合| 国产欧美一区二区精品性| 国产精品污网站| 亚洲精品你懂的| 五月婷婷综合在线| 美女视频免费一区| 国产精品亚洲视频| 色综合久久综合| 欧美精选一区二区| 精品国产乱码久久久久久1区2区| 久久人人97超碰com| 成人欧美一区二区三区视频网页 | 亚洲成av人片观看| 日韩国产欧美在线视频| 国产一区二区免费视频| 在线观看欧美精品| 欧美成人精品福利| 国产精品麻豆99久久久久久| 亚洲国产日韩a在线播放性色| 免费观看在线综合色| 丰满少妇久久久久久久 | 久久久久久久电影| 成人欧美一区二区三区白人| 天堂一区二区在线| 懂色av一区二区夜夜嗨| 欧美亚洲国产怡红院影院| 欧美成人精品福利| 亚洲精品免费在线观看| 韩国视频一区二区| 欧美影片第一页| 中文无字幕一区二区三区 | 一区二区三区蜜桃网| 日韩在线播放一区二区| 不卡的av在线播放| 欧美v日韩v国产v| 一区二区三区四区蜜桃| 韩国毛片一区二区三区| 欧美三电影在线| 国产精品欧美综合在线| 五月激情丁香一区二区三区| 国产凹凸在线观看一区二区| 欧美精品一级二级| 亚洲天堂网中文字| 精品一区二区精品| 欧美日韩一级视频| 日韩伦理免费电影| 成人免费观看视频| 国产欧美日本一区视频| 精品一区二区三区蜜桃| 欧美日韩一区中文字幕| 亚洲视频在线一区二区| 成人免费福利片| 国产喷白浆一区二区三区| 毛片av一区二区三区| 欧美日韩亚洲丝袜制服| 综合久久一区二区三区| jizzjizzjizz欧美| 中文字幕乱码久久午夜不卡| 国内精品伊人久久久久av影院| 欧美疯狂做受xxxx富婆| 无码av免费一区二区三区试看 | 成人黄色777网| 欧美成人一级视频| 久久精品国产99国产| 欧美一区二区三区在线视频| 日韩电影一二三区| 日韩天堂在线观看| 久久99精品久久久久久久久久久久 | av高清久久久| 中文字幕亚洲在| 99精品欧美一区二区三区小说| 国产精品视频第一区| 9久草视频在线视频精品| 国产精品嫩草久久久久| 99re这里只有精品首页| 一级精品视频在线观看宜春院| 色婷婷av一区二区三区软件| 一区二区在线看| 欧美美女视频在线观看| 天天av天天翘天天综合网| 欧美高清视频不卡网| 奇米影视一区二区三区小说| 精品国精品自拍自在线| 成人激情文学综合网| 亚洲私人影院在线观看| 欧美午夜一区二区| 日韩黄色小视频| 久久久99精品免费观看| av不卡一区二区三区| 一区二区三区在线播放| 欧美一区二区在线观看| 国产伦精品一区二区三区视频青涩| 国产亚洲制服色| 91传媒视频在线播放| 日韩激情视频在线观看| 精品国产91乱码一区二区三区| 国产精品一二三区| 一区二区免费看| 欧美成人a∨高清免费观看| 国产91丝袜在线观看| 亚洲免费观看高清完整版在线观看| 欧美三级中文字幕| 从欧美一区二区三区| 午夜久久久久久| 国产精品麻豆99久久久久久| 在线亚洲人成电影网站色www| 日韩中文字幕一区二区三区| 久久一区二区视频| 欧美日韩久久一区| 成人性色生活片免费看爆迷你毛片| 亚洲一区在线观看免费观看电影高清 | 欧美群妇大交群中文字幕| 国产一区999| 亚洲电影在线免费观看| 欧美国产禁国产网站cc| 91麻豆精品国产自产在线| 99精品在线免费| 激情深爱一区二区| 午夜精品久久久久久久99樱桃| 国产亚洲精品免费| 欧美久久一区二区| 色婷婷国产精品久久包臀| 国产99久久久国产精品| 蜜臀av性久久久久蜜臀aⅴ| 亚洲日本va在线观看| 国产日韩精品一区二区浪潮av | 成人激情免费网站| 麻豆精品一区二区综合av| 亚洲午夜久久久久久久久电影院| 欧美精品一区二区在线观看| 欧美精品一卡两卡| 欧美性猛片xxxx免费看久爱| 色综合久久久网| 成人黄动漫网站免费app| 精品午夜一区二区三区在线观看 | 99久久精品国产一区| 国产麻豆成人精品| 精品一区二区三区视频| 丰满岳乱妇一区二区三区| 日韩国产精品大片| 亚洲va国产天堂va久久en| 亚洲色欲色欲www| 国产精品初高中害羞小美女文| 2019国产精品| 亚洲精品一线二线三线| 日韩精品一区二区三区视频播放| 欧美日韩五月天| 欧美亚日韩国产aⅴ精品中极品| 97精品视频在线观看自产线路二| 国产成人啪午夜精品网站男同| 久久国产精品99久久久久久老狼 | 精品国产区一区| 久久综合九色综合欧美就去吻| 欧美videos大乳护士334| 日韩精品自拍偷拍| www欧美成人18+| 国产欧美日韩一区二区三区在线观看| 久久色在线视频| 国产午夜亚洲精品不卡| 国产精品久久久一本精品| 亚洲欧洲中文日韩久久av乱码| 亚洲免费观看高清完整| 亚洲国产欧美在线人成| 肉肉av福利一精品导航| 韩国三级中文字幕hd久久精品| 国产99精品在线观看| 在线观看视频91| 日韩欧美你懂的| 久久嫩草精品久久久精品一| 国产精品久久久久影视| 亚洲精品中文在线观看| 日韩高清电影一区| 国产美女精品人人做人人爽| 波多野结衣中文字幕一区二区三区 | 欧美视频在线一区二区三区| 欧美一区二区视频在线观看2022| 久久久亚洲高清| 一区二区三区四区精品在线视频| 五月天一区二区| 国产成人无遮挡在线视频| 欧美写真视频网站| 久久久午夜精品理论片中文字幕| 国产精品久99|