99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

DTS101TC代做、代寫Python語言程序
DTS101TC代做、代寫Python語言程序

時間:2025-04-09  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



DTS101TC Coursework
This coursework is designed to assess your understanding of neural networks and machine learning concepts, as well as your ability to implement, analyze, and evaluate models effectively. It consists of two main components: five assignments and an image object detection project. Detailed instructions, marking criteria, and submission requirements are outlined below. AIGC tools are not allowed.

Part 1: Assignments (50 Marks)
This section includes five individual assignments, each focusing on different neural network techniques and datasets. The breakdown for each task includes marks for code execution, analysis, evaluation, and reporting quality.
Submission Requirements
Please submit your notebooks to Gradescope. Each assignment must be completed according to the instructions provided in the Python Jupyter Notebook, with all output cells saved alongside the code. You don’t need to write a report for this part. Please put all the analysis and results in your notebook.
Weekly TA checks during lab sessions and office hours are mandatory. Assignments will not be graded without TA verification.
Question 1: Digit Recognition with Neural Networks
Task: Implement a basic neural network using TensorFlow/PyTorch to train a digit recognition model on the MNIST dataset.
Mark Breakdown:
oCode execution by Gradescope: 5 marks
oData and model analysis: 2 marks
oTest cases: 2 marks
oReport quality (comments and formatting): 1 mark
Question 2: Logistic Regression for Flower Classification
Task: Build and implement a Logistic Regression model to classify three types of iris flowers using the dataset in sklearn.
Mark Breakdown:
oCode execution by Gradescope: 5 marks
oData and model analysis: 2 marks
oTest cases: 2 marks
oReport quality (comments and formatting): 1 mark

Question 3: House Price Prediction with ANN/MLP
Task: Design and implement an ANN/MLP model to predict house prices in California using the dataset in sklearn.
Mark Breakdown:
oCode execution by Gradescope: 5 marks
oData and model analysis: 2 marks
oTest cases: 2 marks
oReport quality (comments and formatting): 1 mark
Question 4: Stock Price Prediction with RNN
Task: Create an RNN model to predict stock prices for companies like Apple and Amazon from the Nasdaq market using the provided dataset.
Mark Breakdown:
oCode execution by Gradescope: 5 marks
oData and model analysis: 2 marks
oModel evaluation: 2 marks
oReport quality (comments and formatting): 1 mark
Question 5: Image Classification with CNN
Task: Develop a CNN model to classify images into 10 classes using the CIFAR-10 dataset.
Mark Breakdown:
oCode execution by Gradescope: 5 marks
oData and model analysis: 2 marks
oModel evaluation: 2 marks
oReport quality (comments and formatting): 1 mark

Part 2: Project (50 Marks)
The project involves building a custom image dataset and implementing an object detection neural network. This is a comprehensive task that evaluates multiple skills, from data preparation to model evaluation. 
Submission Requirements
All of your dataset, code (Python files and ipynb files) should be a package in a single ZIP file, with a PDF of your report (notebook with output cells, analysis, and answers). INCLUDE your dataset in the zip file.
Step 1: Dataset Creation (10 Marks)
Task: Collect images and use tools like Label Studio or LabelMe to create labeled datasets for object detection. You can add one more class into the provided dataset. The dataset should have up to 10 classes. Each contains at least 200 images.
Deliverable: Include the dataset in the ZIP file submission.
Mark Breakdown:
oCorrect images and labels: 6 marks
oData collection and labeling process explanation: 2 marks
oDataset information summary: 2 marks
Step 2: Data Loading and Exploration (10 Marks)
Task: Organize data into train, validation, and test sets. Display dataset statistics, such as class distributions, image shapes, and random samples with labels. Randomly plot 5 images in the training set with their corresponding labels.
Mark Breakdown:
oCorrect dataset splitting: 6 marks
oDataset statistics: 2 marks
oSample images and labels visualization: 2 marks
Step 3: Model Implementation (10 Marks)
Task: Implement an object detection model, such as YOLOv8. Include a calculation of the total number of parameters in your model. You must include calculation details.
Mark Breakdown:
oCode and comments: 6 marks
oParameter calculation details and result: 4 marks
Step 4: Model Training (10 Marks)
Task: Train the model using appropriate hyperparameters (e.g., epoch number, optimizer, learning rate). Visualize training and validation performance through graphs of loss and accuracy.
Mark Breakdown:
oCode and comments: 6 marks
oHyperparameters analysis: 2 marks
oPerformance analysis: 2 marks
Step 5: Model Evaluation and Testing (10 Marks)
Task: Evaluate the model on the test set, displaying predictions (visual result) and calculating metrics like mean Average Precision (mAP) and a confusion matrix.
Mark Breakdown:
oCode and comments: 6 marks
oPrediction results: 2 marks
oEvaluation metrics: 2 marks
Submission Guidelines
1.Assignments: Submit your Jupyter Notebooks via Gradescope. Ensure all output cells are saved and visible.
2.Project: Submit your ZIP file containing the dataset, Python files, Jupyter Notebooks, and a PDF report via Learning Mall Core.
General Notes and Policies
1.Plagiarism: Submissions must be your own work. Avoid copying from external sources without proper attribution. Sharing code is prohibited.
2.Late Submissions: Follow the university's policy on late submissions; penalties may apply.
3.Support: Utilize lab sessions and TA office hours for guidance.

Marking Criteria
Assignments
Code execution by Gradescope: 5 marks
Data and model analysis: 2 marks
Test cases or model evaluation: 2 marks
Report quality (comments and formatting): 1 mark
Project
Code (60%):
oFully functional code with clear layout and comments: 6 marks
oPartially functional code with some outputs: 4 marks
oCode that partially implements the solution but does not produce outcomes: 2 marks
oIncomplete or non-functional code: 0 marks
Analysis (40%):
oComplete and accurate answers with clear understanding: 4 marks
oPartial answers showing some understanding: 2 marks
oLimited understanding or incorrect answers:: 0 marks

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代寫AI3013編程、代做Python設計程序
  • 下一篇:代寫MEC 302、代做python編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                精品在线一区二区三区| 久久久亚洲午夜电影| 国产麻豆成人传媒免费观看| 欧美日韩亚洲综合在线| 午夜亚洲国产au精品一区二区| 91在线免费播放| 日韩理论在线观看| 欧美久久一二三四区| 久久不见久久见免费视频1| 久久中文娱乐网| 成人动漫在线一区| 亚洲韩国精品一区| 久久久www成人免费无遮挡大片| 国产精品一区不卡| 亚洲色图.com| 欧美精品一区二区三区蜜桃| 99久久综合色| 老司机精品视频线观看86 | 精品少妇一区二区三区在线播放| 美女视频一区二区| 综合婷婷亚洲小说| 国产精品69毛片高清亚洲| 日韩 欧美一区二区三区| 欧美激情一区在线| 国产九色sp调教91| 亚洲人成7777| 欧美一级高清片| 国产一本一道久久香蕉| 国产精品久久看| 日本高清免费不卡视频| 免费看精品久久片| 成人免费在线视频观看| 日韩一区二区三区av| 久久国产精品99精品国产| 亚洲欧美一区二区三区极速播放| 91精品国产品国语在线不卡| 国产精品一区三区| 亚洲bt欧美bt精品| 亚洲美女精品一区| 精品国产乱码久久久久久1区2区| 91女神在线视频| 国产不卡在线一区| 蜜桃视频一区二区三区| 午夜免费久久看| 亚洲精品欧美二区三区中文字幕| 日本一区二区免费在线观看视频| 日韩一区二区视频在线观看| 欧美日韩一区在线| 91免费视频网| www.视频一区| 99久久er热在这里只有精品66| 免费视频一区二区| 男女激情视频一区| 美女一区二区视频| 蜜桃传媒麻豆第一区在线观看| 视频在线观看91| 视频一区欧美精品| 轻轻草成人在线| 九九精品一区二区| 国产成人小视频| 99久久国产综合精品色伊| 国产一区二区三区高清播放| 精一区二区三区| 狠狠色狠狠色合久久伊人| 精品写真视频在线观看| 精品在线播放免费| 国产美女在线观看一区| 国产69精品久久久久毛片| 99视频精品在线| 欧美亚洲国产怡红院影院| 欧美喷潮久久久xxxxx| 69av一区二区三区| 久久精品欧美一区二区三区不卡| 欧美国产精品久久| 亚洲一区中文日韩| 寂寞少妇一区二区三区| 97久久超碰精品国产| 9191成人精品久久| 欧美国产精品一区二区三区| 依依成人精品视频| 极品少妇一区二区三区精品视频 | 一区二区三区四区精品在线视频| 亚洲精品大片www| 久久91精品久久久久久秒播| 成人av一区二区三区| 欧美日韩精品系列| 国产精品人妖ts系列视频| 亚洲精品中文字幕在线观看| 另类综合日韩欧美亚洲| 成人性生交大片免费| 欧美色精品在线视频| 欧美r级在线观看| 亚洲精品中文在线| 国产成人精品www牛牛影视| 欧美精品乱码久久久久久按摩| 久久久久久**毛片大全| 亚洲成va人在线观看| 成人精品视频.| 日韩一区二区不卡| 一区二区三区国产| 成人在线视频一区二区| 日韩欧美国产wwwww| 亚洲午夜免费福利视频| 国产成a人亚洲| 日韩一区二区三区免费观看| 一区二区三区在线免费视频 | 国产精品主播直播| 欧美一区二区三级| 亚洲午夜免费视频| 91黄视频在线观看| 国产精品理论在线观看| 国产精品资源在线看| 91精品国模一区二区三区| 伊人婷婷欧美激情| 色综合天天天天做夜夜夜夜做| 久久精品欧美一区二区三区麻豆| 秋霞午夜av一区二区三区| 欧美日韩午夜影院| 亚洲在线观看免费| 在线看一区二区| 亚洲免费av网站| 91美女蜜桃在线| 日韩伦理电影网| 色综合 综合色| 一区二区三区在线视频观看58| 99综合影院在线| 亚洲伦理在线精品| 在线精品观看国产| 亚洲在线一区二区三区| 欧美日韩黄色一区二区| 亚洲在线视频免费观看| 日本韩国一区二区三区视频| 亚洲精品高清视频在线观看| 欧美系列日韩一区| 婷婷国产在线综合| 日韩欧美国产精品一区| 狠狠色狠狠色综合系列| 国产精品女同一区二区三区| 色婷婷久久99综合精品jk白丝| 亚洲黄色性网站| 欧美一区在线视频| 国产99久久久国产精品免费看 | 亚洲欧洲av色图| 欧美视频一区在线观看| 久久国产精品露脸对白| 国产精品福利一区二区三区| 色成人在线视频| 免费成人在线视频观看| 久久久三级国产网站| av亚洲精华国产精华| 亚洲国产综合人成综合网站| 日韩午夜激情av| 成人中文字幕电影| 亚洲小少妇裸体bbw| 2024国产精品| 欧美午夜精品久久久久久超碰| 捆绑变态av一区二区三区 | 亚洲视频在线一区| 欧美人xxxx| 成人激情黄色小说| 免费观看在线色综合| 亚洲人123区| 久久精品这里都是精品| 欧美日韩一级片在线观看| 国产精品白丝av| 日精品一区二区| **网站欧美大片在线观看| 日韩精品一区二区三区四区视频 | 一本色道亚洲精品aⅴ| 久久国内精品自在自线400部| 一区二区三区四区高清精品免费观看 | 欧美成人精精品一区二区频| 豆国产96在线|亚洲| 青青草97国产精品免费观看无弹窗版 | 亚洲综合成人在线视频| 国产日韩欧美高清在线| 91超碰这里只有精品国产| 91亚洲国产成人精品一区二三| 精彩视频一区二区三区| 日韩电影在线观看电影| 一区二区三区四区在线| 欧美国产亚洲另类动漫| 日韩欧美中文字幕公布| 欧美精品xxxxbbbb| 91激情在线视频| 91一区在线观看| www.久久精品| 处破女av一区二区| 国产麻豆视频一区二区| 久久99国产精品免费| 日本成人在线视频网站| 亚洲第一成年网| 亚洲伊人色欲综合网| 一区二区三区在线视频观看58| 国产精品久久久久影院老司| 欧美国产日韩一二三区| 中文字幕巨乱亚洲| 国产精品激情偷乱一区二区∴| 亚洲国产精品ⅴa在线观看| 国产欧美精品在线观看|