99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

MSE 5760代做、代寫C/C++,Java程序
MSE 5760代做、代寫C/C++,Java程序

時間:2025-05-06  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



MSE 5760: Spring 2025 HW 6 (due 05/04/25)
Topic: Autoencoders (AE) and Variational Autoencoders (VAE)
Background:
In this final homework, you will build a deep autoencoder, a convolutional 
autoencoder and a denoising autoencoder to reconstruct images of an isotropic composite 
with different volume fractions of fibers distributed in the matrix. Five different volume 
fraction of fibers are represented in the dataset and these form five different class labels for 
the composites. After the initial practice with AEs and reconstruction of images using latent 
vectors, you will build a VAE to examine the same dataset. After training the VAE (as best 
as you can using the free colab resources to reproduces images), you will use it to generate 
new images by randomly sampling datapoints from the learned probability distribution of 
the data in latent space. Finally, you will build a conditional VAE to not only generate new 
images but generate them for arbitrary volume fractions of fibers in the composite.
The entire dataset containing 10,000 images of composites with five classes of 
volume fractions of fibers was built by Zequn He (currently a Ph.D. student in MEAM in 
Prof. Celia Reina’s group who helped put together this course in Summer 2022 by designing 
all the labs and homework sets). Each image in the dataset shows three fibers of different 
volumes with circular cross sections. Periodic boundary conditions were used to generate 
the images. Hence, in some images, the three fiber particles may appear broken up into
more than three pieces. The total cross sectional area of all the fibers in each image can, 
however, be divided equally among three fibers. Please do not use this dataset for other 
work or share it on data portals without prior permission from Zequn He
(hezequn@seas.upenn.edu).
Due to the large demands on memory and the intricacies of the AE-VAE 
architecture, the results obtained will not be of the same level of accuracy and quality that 
was possible in the previous homework sets. No train/test split is recommended as all 
10,000 images are used for training purposes. You may, however, carry out further analysis 
using train/test split or by tuning the hyperparameters or changing the architecture for 
bonus points. The maximum bonus points awarded for this homework will be 5.
**********************************Please Note****************************
Sample codes for building the AE, VAE and a conditional GAN were provided in 
Lab 6. There is no separate notebook provided for the homework and students will 
have to prepare one. Tensorflow and keras were used in Lab 6 and is recommended 
for this homework. You are welcome to use other libraries such as pytorch.
************************************************************************
1. Model 1: Deep Autoencoder model (20 points)
Import the needed libraries. Load the original dataset from canvas. Check the 
dimensions of each loaded image for consistency. Scale the images.
1.1 Print the class labels and the number of images in each class. Print the shape of 
the input tensor representing images and the shape of the vector representing the 
class labels. (2 points)
1.1. A measure equivalent to the volume fraction of fibers in each composite image is 
the mean pixel value of the image. As the images are of low-resolution, you may 
notice a slight discrepancy in the assigned class value of the image and the 
calculated mean pixel intensity. As the resolution of images increases, there will be 
negligible difference between the assigned class label and the pixel mean of the 
image. Henceforth, we shall use the pixel mean (PM) intensity of the images to be 
the class label. Print a representative sample of ten images showing the volume 
fraction of fibers in the composite along with the PM value of the image. (3 points)
1.2. Build the following deep AE using the latent dimension value = 64.
(a) Let the first layer of the encoder have 256 neurons.
(b) Let the second layer of the encoder have 128 neurons.
(c) Let the last layer of the encoder be the context or latent vector.
(d) Use ReLU for the activation function in all of the above layers.
(e) Build a deep decoder with its input being the context layer of the encoder.
(f) Build two more layers of the decoder with 128 and 256 neurons, respectively. 
These two layers can use the ReLU activation function.
(g) Build the final layer of the decoder such that its output is compatible with the 
reconstruction of the original input shape tensor. Use sigmoid activation for the 
final output layer of the decoder.
(h) Use ADAM as your optimizer and a standard learning rate. Let the loss be the 
mean square error loss. Compile the AE and train it for at least 50 epochs.
(10 points)
1.3. Print the summary of the encoder and decoder blocks showing the output shape of 
each layer along with the number of parameters that need to be trained. Monitor 
and print the lossfor each epoch. Plot the loss as a function of the epochs. (2 points)
1.4. Plot the first ten reconstructed images showing both the original and reconstructed 
images. (3 points)
2. Model 2: Convolutional Autoencoder model (20 points)
2.1 Build the following convolutional AE with the latent dimension = 64
(a) In the first convolution block of the encoder, use 8 filters with 3x3 kernels, 
ReLU activation and zero padding. Apply max pooling layer with a kernel of 
size 2.
(b) In the second convolution block use 16 filters with 3x3 kernels, ReLU activation 
and zero padding. Apply max pooling layer with a kernel of size 2.
(c) In the third layer of the encoder use 32 filters with 3x3 kernels, ReLU activation 
and zero padding. Apply max pooling layer with a kernel of size 2.
(d) Flatten the obtained feature map and then use a Dense layer with ReLU 
activation function to extract the latent variables.
(d) Build the decoder in the reverse order of the encoder filters with the latent 
output layer of the encoder serving as the input to the decoder part.
(e) Use ADAM as your optimizer and a standard learning rate. Let the loss be the 
mean square error loss. Compile the convolutional AE and train it for at least 
50 epochs.
(10 points)
2.2 Print the summary of the encoder and decoder blocks showing the output shape of 
each layer along with the number of parameters that need to be trained. Monitor 
and print the lossfor each epoch. Plot the loss as a function of the epochs. (5 points)
2.3 Plot the first ten reconstructed images showing both the original and reconstructed 
images. (5 points)
3. Model 3: Denoising convolutional Autoencoder model (15 points)
3.1 Add a Gaussian noise to each image. Choose a Gaussian with a mean of zero and a 
small standard deviation, typically ~ 0.2. Plot a sample of five original images with 
noise. (3 points)
3.2 Use the same convolutional autoencoder as in Problem 2 but with noisy images fed 
to the encoder. Train and display all the information as in 2.2 and 2.3.
(12 points)
4. Model 4: Variational Autoencoder model (25 points)
4.1 Set the latent dimension of the VAE be 64. Build a convolutional autoencoder with 
the following architecture. Set the first block to have 32 filters, 3x3 kernels with 
stride = 2 and zero padding.
4.2 Build the second block with 64 filters, 3x3 kernels, stride =2 and zero padding. Use 
ReLU in both blocks. Apply max pooling layer with kernel of size 2x2.
4.3 Build an appropriate output layer of the encoder that captures the latent space 
probability distribution.
4.4 Define the reparametrized mean and variance of this distribution.
4.5 Build the convolutional decoder in reverse order. Apply the same kernels, stride 
and padding as in the encoder above. Choose the output layer of the decoder and 
apply the appropriate activation function.
4.6 Compile and train the model. Monitor the reconstruction loss, Kullback-Liebler 
loss and the total loss. Plot all three quantities for 500 epochs. (10 points)
4.7 Plot the first ten reconstructed images along with their originals. (5 points)
4.8 Generate ten random latent variables from a standard Gaussian with mean zero and 
unit variance. Display the generated images from these random values of the latent 
vector. Comment on the quality of your results and how it may differ from the input 
images. Mention at least one improvement that can be implemented which may 
improve the results. (3+3+4=10 points)
5. Model 5: Conditional Variational Autoencoder model (20 points)
A conditional VAE differs from a VAE by allowing for an extra input 
variable to both the encoder and the decoder as shown below. The extra label could 
be a class label, ‘c’ for each image. This extra label will enable one to infer the 
conditional probability that describes the latent vector conditioned on the class label 
‘c’ of the input. In VAE, using the variational inference principle, one infers the 
Gaussian distribution (by learning its mean and variance) of the latent vector 
representing each input ‘x’. In conditional VAE, one infers the Gaussian 
conditional distribution of the latent vector conditioned on the extra input variable 
‘label’.
For the dataset used in this homework, there are two advantages of the 
conditional VAE compared to the VAE: (i) the conditional VAE provides a cheap
way to validate the model by comparing the pixel mean of the generated images 
with the conditional class label values (pixel mean) in latent space used to generate 
the images. (ii) The trained conditional VAE can be used to generate images of 
composites with arbitrary volume fraction of fibers with sufficient confidence once 
the validation is done satisfactorily.
A conditional VAE. (source: https://ijdykeman.github.io/ml/2016/12/21/cvae.html)
A good explanation of the conditional VAE in addition to the resource cited in the 
figure above is this: https://agustinus.kristia.de/techblog/2016/12/17/conditional vae/.
A conditional GAN (cGAN) toy problem was shown in Lab 6 where the volume 
fraction (replaced by pixel mean for cheaper model validation) was the design 
parameter, and thus, the condition input into the cGAN. In this question, you will 
build a conditional VAE for the same task of generating new images of composites 
as in Problem 4 by randomly choosing points in the latent space. Since each point 
in the latent space represents a conditional Gaussian distribution, it also has a class 
label. Therefore, it becomes possible to calculate the pixel mean of a generated 
image and compare it with the target ‘c’ value of the random point in latent space. 
It is recommended that students familiarize themselves with the code for providing 
the input to the cGAN with class labels and follow similar logic for building the 
conditional VAE. You may also seek help from the TA’s if necessary.
5.1 Create an array that contains both images and labels (the pixel mean of each image). 
Note the label here is the condition and it should be stored in the additional channel 
of each image.
5.2 Use the same structure, activation functions and optimizer as the one used to build 
the VAE in Problem 4. Print the summary of the encoder and decoder blocks 
showing the output shape of each layer along with the number of parameters that 
need to be trained. (5 points)
5.3 Train the cVAE for 500 epochs. Plot the reconstruction loss, Kullback-Liebler loss 
and the total loss. Plot the first ten reconstructed images along with their originals. 
Include values of the pixel mean for both sets of images. (5 points)
5.4 Generate 10 fake conditions (i.e., ten volume fractions represented as pixel means 
evenly spaced within the range 0.1 to 0.4 as used in Lab 6) for image generation. 
Print the shape of the generated latent variable. Print the target volume fraction (or 
pixel mean). Show the shape of the array that combines the latent variables and fake 
conditions. Print the shape of the generated image tensor. (2 points)
5.5 Plot the 10 generated images. For each image show the generated condition (the 
pixel mean of each image generated in 5.4) and the pixel mean calculated from the 
image itself. (3 points)
5.6 Compare the set of generated images from the conditional VAE with the ones 
obtained in Lab 6 using cGAN. Comment on their differences and analyze the 
possible causes for the differences. (5 points)

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:代做 EEB 504B、代寫 java/Python 程序
  • 下一篇:COMP1117B代做、代寫Python程序設計
  • ·代做CAP 4611、代寫C/C++,Java程序
  • ·代做ISYS1001、代寫C++,Java程序
  • ·代做COMP2221、代寫Java程序設計
  • ·代寫MATH3030、代做c/c++,Java程序
  • ·COMP 5076代寫、代做Python/Java程序
  • ·代寫COP3503、代做Java程序設計
  • ·COMP3340代做、代寫Python/Java程序
  • ·COM1008代做、代寫Java程序設計
  • ·MATH1053代做、Python/Java程序設計代寫
  • ·CS209A代做、Java程序設計代寫
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業(yè)/產品研發(fā)/客戶要求/設計優(yōu)化
    有限元分析 CAE仿真分析服務-企業(yè)/產品研發(fā)
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                成人综合婷婷国产精品久久免费| 91网站最新网址| 国产在线国偷精品产拍免费yy| 国产老肥熟一区二区三区| 欧美精品一二三| 亚洲成av人片在线观看无码| 色欧美日韩亚洲| 亚洲精品免费在线| 欧美在线短视频| 日韩影视精彩在线| 欧美精品一区二区不卡| av一区二区三区| 又紧又大又爽精品一区二区| 欧美日韩国产小视频| 另类小说综合欧美亚洲| 国产精品色婷婷久久58| 一本到不卡免费一区二区| 亚洲bdsm女犯bdsm网站| 久久欧美一区二区| 在线观看亚洲一区| 国产一区欧美日韩| 亚洲成av人片在线| 国产免费观看久久| 欧美日韩午夜影院| 国产·精品毛片| 亚洲国产精品尤物yw在线观看| 久久综合九色综合欧美98 | 一区二区视频在线| 欧美大片一区二区| 日本久久一区二区三区| 国产91精品在线观看| 亚洲成人福利片| 亚洲黄色免费网站| 国产精品亲子乱子伦xxxx裸| 日韩手机在线导航| 欧美午夜精品一区二区三区| 成人免费视频播放| 国产大陆亚洲精品国产| 热久久国产精品| 一区二区三区电影在线播| 国产精品麻豆视频| 国产视频一区不卡| 国产亚洲1区2区3区| 日韩一区二区三区三四区视频在线观看| 丰满亚洲少妇av| 激情av综合网| 麻豆国产欧美日韩综合精品二区| 五月天视频一区| 亚洲最大成人网4388xx| 亚洲最新视频在线观看| 亚洲乱码日产精品bd| 综合亚洲深深色噜噜狠狠网站| 国产日本亚洲高清| 久久精品水蜜桃av综合天堂| 国产女人18水真多18精品一级做| 亚洲精品一区二区三区福利| 精品国产一区二区精华| 欧美第一区第二区| 精品成人一区二区三区| 国产色综合久久| 欧美色视频在线观看| 欧美一a一片一级一片| 在线观看免费成人| 欧美高清视频一二三区| 日韩一区二区三区电影在线观看 | 99久久伊人久久99| 高清国产午夜精品久久久久久| 国产老妇另类xxxxx| 成人免费高清视频在线观看| av亚洲精华国产精华精| 欧美视频一区二区三区在线观看| 91久久精品国产91性色tv| 制服丝袜中文字幕亚洲| 精品成人私密视频| 国产精品灌醉下药二区| 亚洲一级片在线观看| 日本亚洲免费观看| 成人性生交大片免费看在线播放| hitomi一区二区三区精品| 欧亚洲嫩模精品一区三区| 欧美一区二视频| 国产精品欧美久久久久一区二区| 亚洲男同性恋视频| 日韩 欧美一区二区三区| 精品一区免费av| 丁香五精品蜜臀久久久久99网站 | 亚洲一区二区三区中文字幕在线| 日韩精品欧美精品| 高清成人免费视频| 欧美色电影在线| 久久久久久久久97黄色工厂| 亚洲日本韩国一区| 免费欧美日韩国产三级电影| 91在线视频18| 日韩午夜在线观看| 日韩美女精品在线| 国产毛片精品一区| 欧美精品久久久久久久久老牛影院| 2023国产精品| 亚洲国产毛片aaaaa无费看| 国产高清成人在线| 欧美一区二区三区免费大片| 国产精品美女久久久久久2018| 亚洲高清免费观看| 国产69精品久久777的优势| 欧美精品v国产精品v日韩精品 | 久久色.com| 亚洲成a人v欧美综合天堂下载| 国产美女av一区二区三区| 欧美日韩精品一二三区| 亚洲精品少妇30p| 国产成人精品一区二区三区四区| 欧美一区二区三区四区在线观看| 亚洲视频在线一区二区| 国产成人自拍在线| 精品久久久久99| 人人精品人人爱| 91精品麻豆日日躁夜夜躁| 亚洲码国产岛国毛片在线| 99久久综合国产精品| 国产人伦精品一区二区| 国内精品免费在线观看| 日韩欧美一区中文| 蜜桃av噜噜一区| 日韩午夜在线播放| 麻豆精品视频在线观看视频| 欧美日韩一二三| 一区二区不卡在线播放 | 国产成人精品网址| 2023国产一二三区日本精品2022| 日韩经典一区二区| 欧美日韩高清不卡| 亚洲成人久久影院| 欧美久久一二区| 蜜臀精品一区二区三区在线观看| 欧美精品tushy高清| 奇米精品一区二区三区在线观看一 | 国产一区二区三区综合| 26uuu国产一区二区三区| 国产盗摄一区二区| 国产欧美久久久精品影院| 成人激情动漫在线观看| 国产精品国产三级国产aⅴ中文| 成人网男人的天堂| 亚洲三级在线观看| 欧美专区日韩专区| 久久国产精品99久久久久久老狼 | 成人午夜激情视频| 国产精品久久一卡二卡| 欧美性猛交一区二区三区精品 | 日本中文一区二区三区| 日韩精品一区二区三区蜜臀| 国产精品99久久久久久久女警 | 一区二区久久久| 91精品国产麻豆| 成人免费观看av| 一区二区免费视频| 精品国产亚洲在线| 高清成人在线观看| 日韩极品在线观看| 久久精品免视看| 欧美色网站导航| 国产99久久久国产精品免费看| 国产精品久久久久久亚洲毛片 | 日韩欧美中文字幕公布| 国产91高潮流白浆在线麻豆| 亚洲图片一区二区| 久久―日本道色综合久久| 91福利在线导航| 国产精品一区二区你懂的| 亚欧色一区w666天堂| 久久久99久久精品欧美| 欧美日韩情趣电影| 成人免费视频视频| 日韩电影一区二区三区四区| 国产精品动漫网站| 精品国产一区二区国模嫣然| 欧美亚洲国产一区二区三区va| 国产精品一区久久久久| 蜜臀精品一区二区三区在线观看 | 国内精品伊人久久久久影院对白| 亚洲黄色性网站| 欧美激情一区在线观看| 久久综合色之久久综合| 91.xcao| 欧美中文字幕不卡| 91在线观看美女| 国产成人在线电影| 国模无码大尺度一区二区三区| 亚洲一本大道在线| 一区二区三区不卡在线观看 | 久久毛片高清国产| 日韩欧美色综合| 欧美剧情片在线观看| 欧美精品自拍偷拍| 欧美日韩免费不卡视频一区二区三区 | 成人午夜av电影| 国产精品888| 国产精品一区二区你懂的| 激情五月婷婷综合|