99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

ECE371編程代做、代寫Python程序設計
ECE371編程代做、代寫Python程序設計

時間:2025-05-08  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



ECE371 Neural Networks and Deep Learning
Assignment 1: Image classification by using deep models
Due Date: 23:59, 14
th May, 2025
This assignment aims to train models for flower classification. You can choose either Colab online
environment or local environment. This assignment will worth 15% ofthe final grade. Exercise 1: Fine-tune classification model using MMClassification (50%)
Please complete the fine-tune training based on the pre-training model provided by MMClassification
(https://github.com/open-mmlab/mmpretrain/tree/1.x). You should:
1. Prepare the flower datasets. The flower pictures are provided in flower_dataset.zip. The flower dataset contains flowers from 5 categories: daisy 588, dandelion 556, rose 583, sunflower 536 and tulip 585. Please split the dataset into training set and validation set in a ratio
of 8:2, and organize it into ImageNet format. Detailed steps:
1) Put the training set and validation set under folders named ‘train’ and ‘val’. 2) Create and edit the category name file. Please write all names flower categories into file
‘classes.txt’with each line representing one class. 3) Generate training (optional) and validation sets annotation lists: ‘train.txt’and ‘val.txt’. Each line should contain a filename and its corresponding annotation. Example:
daisy/NAME**.jpg 0
daisy/NAME**.jpg 0
... dandelion/NAME**.jpg 1
dandelion/NAME**.jpg 1
... rose/NAME**.jpg 2
rose/NAME**.jpg 2
... sunflower/NAME**.jpg 3
sunflower/NAME**.jpg 3
... tulip/NAME**.jpg 4
tulip/NAME**.jpg 4
The final file structure should be:
flower_dataset
|--- classes.txt
|--- train.txt
|--- val.txt
| |--- train
| | |--- daisy
|
|
|--- …
--- dandelion
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- rose
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- sunflower
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- tulip
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
val --- daisy
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- dandelion
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- rose
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- sunflower
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- tulip
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
This process can be done using Python or other scripting programs. And it can be completed
locally/offline to save the Colab’s time online. Once the dataset has been prepared, please migrate the processed dataset to the project folder, (e.g., ./data). To reduce duplicate uploads, you can Sync the data to google drive
|--- NAME1.jpg
|--- NAME2.jpg

and import it in Colab. 2. Modify the configuration file
Use the _base_ inheritance mechanism to build profiles for fine-tuning, which can be inherited
and modified from any ImageNet-based profile provided by MMClassification. 1) Modify the model configuration. Change the category header to adapt the model to the
number of data categories in our flower dataset. 2) Modify the dataset configuration. Change the data paths for the training set, validation set, the list of dataset annotations, and the category name file. And modify the evaluation method
to use only the top-1 classification error rate. 3) Modify learning rate strategy. Fine-tuning generally uses a smaller learning rate and fewer
training period. Therefore please change them in configuration file. 4) Configuring pre-trained models. Please find the model file corresponding to the original
configuration file from Model Zoo. Then download it to Colab or your local environment
(usually in the checkpointsfolder). Finally you need to configure the path to the pre-trained
model in the configuration file. 3. Complete the finetune training using tools. Please use tools/train.py to fine-tune the model and specify the work path via the work_dir
parameter, where the trained model will be stored. Tune the parameters, or use a different pre-trained model to try to get a higher classification
accuracy. For reference, it is not difficult to achieve classification accuracies above 90% on this
dataset. Exercise 2: Complete the classification model training script (50%)
The provided script main.py is a simple PyTorch implement to classify the flower dataset you’ve
prepared above, but this script is not complete. 1. You’ll be expected to write some code in some code blocks. These are marked at the top of the
block by a #GRADED FUNCTIONcomment, and you’ll write your code in between the ###
START SOLUTION HERE ### and ###END SOLUTION HERE### comments. 2. After coding your function, put your flower datasets flower_dataset to the EX2 folder (EX2/
flower_dataset) and then run this main.py script. 3. If your code is correct, you can obtain the right printed information with loss, learning rate and
accuracy on validation set, and the best model with the highest validation accuracy will be stored
in the Ex2/work_dirfolder. 4. You can modify the configuration or the model in main.pyto beat the original result. (optional)
5. Please write a report with Latex and submit a .pdf file (the main text should not exceed 4
pages, excluding references). Please use this overleaf template https://www.overleaf.com/read/vjsjkdcwttqp#ffc59a . There are detailed report requirements.
Submission requirements:
1. You need to submission all materials to GitHubClassroom. Please create a GitHub account in
advance. . Later we will provide a link of this assignment, click it and you
will get an initial repository containing two folders named: Ex1 with flower_dataset.zipin it, and
Ex2 with main.pyin it. You need to upload all the materials below to your repository:
1) For exercise 1, please put your configuration file and the saved trained model in Ex1;
2) For exercise 2, please put your report, completed script file and the saved trained model
(auto saved in work_dir) in Ex2. 2. Please note that, the teaching assistants may ask you to explain the meaning of the program, to
ensure that the codes are indeed written by yourself. Plagiarism will not be tolerated. We may
check your code. 3. The deadline is 23:59 PM, 14
th May. For each day of late submission, you will lose 10% of your
mark in corresponding assignment. If you submit more than three days later than the deadline, you
will receive zero in this assignment. No late submission emails or message will be replied.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:CPT206代做、代寫Java編程語言
  • 下一篇:CSC1002代寫、代做Python編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          久久av一区二区三区| 亚洲黄色尤物视频| 欧美va亚洲va香蕉在线| 国产精品99久久久久久www| 国产在线麻豆精品观看| 欧美三日本三级少妇三99| 久久精品人人做人人爽电影蜜月| 日韩视频中文| 91久久久久| 狠狠久久综合婷婷不卡| 国产精品拍天天在线| 欧美巨乳在线观看| 欧美成人精品高清在线播放| 久久久久久亚洲精品中文字幕| 亚洲欧美另类国产| 在线一区二区三区做爰视频网站| 亚洲国产精品视频一区| 精品51国产黑色丝袜高跟鞋| 国产麻豆9l精品三级站| 国产精品免费看片| 国产精品色一区二区三区| 欧美日韩激情小视频| 欧美激情导航| 欧美精品久久久久久久久久| 欧美高清不卡在线| 欧美成人一区二区在线| 欧美成人精品影院| 欧美成人免费va影院高清| 久久精品夜夜夜夜久久| 久久午夜色播影院免费高清| 久久婷婷成人综合色| 久久久久9999亚洲精品| 久久亚洲高清| 欧美美女bb生活片| 欧美日韩国产二区| 国产精品你懂的在线欣赏| 国产精品毛片大码女人| 欧美精品亚洲一区二区在线播放| 你懂的网址国产 欧美| 欧美高清视频在线| 欧美日韩国产一级片| 欧美视频日韩视频| 国产伦精品一区| 韩国一区二区在线观看| 亚洲国产精品一区制服丝袜| 亚洲精品国产欧美| 亚洲欧美久久久| 欧美影院在线播放| 麻豆免费精品视频| 欧美日韩伦理在线免费| 国产亚洲视频在线| 亚洲欧洲一区| 午夜精品理论片| 老司机精品导航| 国产精品成人aaaaa网站| 国产综合在线看| 亚洲精品专区| 欧美中文字幕在线观看| 欧美激情女人20p| 国产日韩欧美高清免费| 亚洲激情综合| 久久精品国产99| 欧美精品久久一区二区| 国产热re99久久6国产精品| 亚洲欧洲一区二区在线观看| 欧美亚洲视频| 欧美日韩国产成人精品| 精品不卡视频| 午夜日韩av| 欧美丝袜一区二区| 亚洲成人在线视频网站| 欧美亚洲日本一区| 欧美三级免费| 91久久精品国产91久久| 久久精品综合一区| 国产欧美精品一区aⅴ影院| 亚洲精品视频在线观看免费| 欧美专区在线播放| 欧美啪啪一区| 韩国在线视频一区| 亚洲欧美在线免费观看| 欧美日韩影院| 亚洲精品一区在线| 久久琪琪电影院| 国产欧美一区二区白浆黑人| 在线视频中文亚洲| 欧美日韩精品综合在线| 亚洲免费精品| 欧美人与性动交α欧美精品济南到| 激情另类综合| 久久久综合网| 韩国av一区二区三区四区| 欧美在线视频在线播放完整版免费观看| 欧美日韩你懂的| 亚洲精品一区二区三区蜜桃久| 久久尤物视频| 在线观看亚洲a| 久久免费视频网站| 影音欧美亚洲| 欧美国产日本在线| 最新国产成人在线观看| 欧美va天堂| 亚洲精品自在久久| 欧美午夜三级| 亚洲欧美精品在线| 国产精品永久免费观看| 香蕉成人伊视频在线观看| 国产精品实拍| 久久精品国产在热久久| 国模一区二区三区| 欧美α欧美αv大片| 亚洲精品久久视频| 国产精品地址| 久久精品女人天堂| 亚洲美女av网站| 国产精品国产三级国产aⅴ9色| 亚洲女同在线| 永久免费精品影视网站| 欧美激情va永久在线播放| 一区二区三区|亚洲午夜| 国产精品亚洲成人| 美女久久网站| 亚洲欧洲av一区二区| 国产日韩精品一区二区三区| 久久视频在线视频| 日韩午夜免费| 国产自产高清不卡| 欧美日韩精品免费在线观看视频| 亚洲欧美日韩精品久久久久| 尤物视频一区二区| 国产精品二区影院| 欧美成人黑人xx视频免费观看| 妖精成人www高清在线观看| 欧美午夜三级| 久久动漫亚洲| 亚洲一区中文字幕在线观看| 狠狠色综合网| 欧美三级在线| 你懂的成人av| 欧美一区二区在线免费播放| 日韩视频免费观看| 韩国精品在线观看| 国产精品欧美精品| 欧美久色视频| 欧美激情日韩| 蘑菇福利视频一区播放| 欧美一区二区三区电影在线观看| 亚洲精选久久| 伊人成人在线| 韩国女主播一区| 国产九九精品视频| 国产精品分类| 欧美巨乳波霸| 免费久久久一本精品久久区| 久久精品国产91精品亚洲| 亚洲视频一二| 一本色道久久综合亚洲二区三区| 亚洲大片在线| 亚洲高清不卡av| 影音先锋亚洲精品| 一区免费观看| 亚洲电影av| 亚洲电影在线免费观看| 一区二区亚洲精品| 韩国成人福利片在线播放| 国产综合在线看| 国精品一区二区三区| 国产亚洲精品成人av久久ww| 国产精品一区久久久久| 国产精品毛片a∨一区二区三区| 欧美日韩一区二区在线播放| 欧美视频导航| 国产麻豆视频精品| 国产一区二区三区自拍| 伊甸园精品99久久久久久| 狠狠久久婷婷| 亚洲国产精品小视频| 亚洲精品一二三| 中文av一区特黄| 午夜精品婷婷| 久久久久国色av免费看影院| 久久久久久久国产| 欧美大片免费看| 欧美视频在线一区二区三区| 国产精品香蕉在线观看| 激情久久五月| 一区二区三区日韩精品| 亚洲一区国产| 久久亚洲私人国产精品va| 欧美护士18xxxxhd| 国产精品理论片在线观看| 国产午夜一区二区三区| 亚洲国产成人精品女人久久久| 亚洲欧洲一区二区在线播放| 亚洲性感激情| 久久午夜精品| 欧美午夜寂寞影院| 一区二区三区在线视频观看| 一区二区三区久久网| 欧美一区观看|