99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

ECE371編程代做、代寫Python程序設計
ECE371編程代做、代寫Python程序設計

時間:2025-05-08  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



ECE371 Neural Networks and Deep Learning
Assignment 1: Image classification by using deep models
Due Date: 23:59, 14
th May, 2025
This assignment aims to train models for flower classification. You can choose either Colab online
environment or local environment. This assignment will worth 15% ofthe final grade. Exercise 1: Fine-tune classification model using MMClassification (50%)
Please complete the fine-tune training based on the pre-training model provided by MMClassification
(https://github.com/open-mmlab/mmpretrain/tree/1.x). You should:
1. Prepare the flower datasets. The flower pictures are provided in flower_dataset.zip. The flower dataset contains flowers from 5 categories: daisy 588, dandelion 556, rose 583, sunflower 536 and tulip 585. Please split the dataset into training set and validation set in a ratio
of 8:2, and organize it into ImageNet format. Detailed steps:
1) Put the training set and validation set under folders named ‘train’ and ‘val’. 2) Create and edit the category name file. Please write all names flower categories into file
‘classes.txt’with each line representing one class. 3) Generate training (optional) and validation sets annotation lists: ‘train.txt’and ‘val.txt’. Each line should contain a filename and its corresponding annotation. Example:
daisy/NAME**.jpg 0
daisy/NAME**.jpg 0
... dandelion/NAME**.jpg 1
dandelion/NAME**.jpg 1
... rose/NAME**.jpg 2
rose/NAME**.jpg 2
... sunflower/NAME**.jpg 3
sunflower/NAME**.jpg 3
... tulip/NAME**.jpg 4
tulip/NAME**.jpg 4
The final file structure should be:
flower_dataset
|--- classes.txt
|--- train.txt
|--- val.txt
| |--- train
| | |--- daisy
|
|
|--- …
--- dandelion
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- rose
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- sunflower
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- tulip
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
val --- daisy
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- dandelion
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- rose
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- sunflower
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- tulip
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
This process can be done using Python or other scripting programs. And it can be completed
locally/offline to save the Colab’s time online. Once the dataset has been prepared, please migrate the processed dataset to the project folder, (e.g., ./data). To reduce duplicate uploads, you can Sync the data to google drive
|--- NAME1.jpg
|--- NAME2.jpg

and import it in Colab. 2. Modify the configuration file
Use the _base_ inheritance mechanism to build profiles for fine-tuning, which can be inherited
and modified from any ImageNet-based profile provided by MMClassification. 1) Modify the model configuration. Change the category header to adapt the model to the
number of data categories in our flower dataset. 2) Modify the dataset configuration. Change the data paths for the training set, validation set, the list of dataset annotations, and the category name file. And modify the evaluation method
to use only the top-1 classification error rate. 3) Modify learning rate strategy. Fine-tuning generally uses a smaller learning rate and fewer
training period. Therefore please change them in configuration file. 4) Configuring pre-trained models. Please find the model file corresponding to the original
configuration file from Model Zoo. Then download it to Colab or your local environment
(usually in the checkpointsfolder). Finally you need to configure the path to the pre-trained
model in the configuration file. 3. Complete the finetune training using tools. Please use tools/train.py to fine-tune the model and specify the work path via the work_dir
parameter, where the trained model will be stored. Tune the parameters, or use a different pre-trained model to try to get a higher classification
accuracy. For reference, it is not difficult to achieve classification accuracies above 90% on this
dataset. Exercise 2: Complete the classification model training script (50%)
The provided script main.py is a simple PyTorch implement to classify the flower dataset you’ve
prepared above, but this script is not complete. 1. You’ll be expected to write some code in some code blocks. These are marked at the top of the
block by a #GRADED FUNCTIONcomment, and you’ll write your code in between the ###
START SOLUTION HERE ### and ###END SOLUTION HERE### comments. 2. After coding your function, put your flower datasets flower_dataset to the EX2 folder (EX2/
flower_dataset) and then run this main.py script. 3. If your code is correct, you can obtain the right printed information with loss, learning rate and
accuracy on validation set, and the best model with the highest validation accuracy will be stored
in the Ex2/work_dirfolder. 4. You can modify the configuration or the model in main.pyto beat the original result. (optional)
5. Please write a report with Latex and submit a .pdf file (the main text should not exceed 4
pages, excluding references). Please use this overleaf template https://www.overleaf.com/read/vjsjkdcwttqp#ffc59a . There are detailed report requirements.
Submission requirements:
1. You need to submission all materials to GitHubClassroom. Please create a GitHub account in
advance. . Later we will provide a link of this assignment, click it and you
will get an initial repository containing two folders named: Ex1 with flower_dataset.zipin it, and
Ex2 with main.pyin it. You need to upload all the materials below to your repository:
1) For exercise 1, please put your configuration file and the saved trained model in Ex1;
2) For exercise 2, please put your report, completed script file and the saved trained model
(auto saved in work_dir) in Ex2. 2. Please note that, the teaching assistants may ask you to explain the meaning of the program, to
ensure that the codes are indeed written by yourself. Plagiarism will not be tolerated. We may
check your code. 3. The deadline is 23:59 PM, 14
th May. For each day of late submission, you will lose 10% of your
mark in corresponding assignment. If you submit more than three days later than the deadline, you
will receive zero in this assignment. No late submission emails or message will be replied.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:CPT206代做、代寫Java編程語言
  • 下一篇:CSC1002代寫、代做Python編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                日韩欧美久久一区| 国产精品三级电影| 亚洲色图制服丝袜| 成人免费视频播放| 亚洲日本一区二区三区| 色一区在线观看| 亚洲国产视频在线| 欧美一区二区三区视频免费| 久久电影网站中文字幕| 国产午夜一区二区三区| 欧美在线不卡一区| 久久精品国产亚洲a| 成人免费在线观看入口| 666欧美在线视频| 成人免费高清在线观看| 亚洲777理论| 亚洲国产经典视频| 欧美一区二区二区| 91蜜桃网址入口| 青青草伊人久久| 亚洲欧美日韩在线| 日韩精品在线看片z| 成人午夜av在线| 日本aⅴ精品一区二区三区| 成人欧美一区二区三区| 久久综合色婷婷| 欧美韩国日本不卡| 精品国产乱码久久久久久浪潮| 色香色香欲天天天影视综合网| 开心九九激情九九欧美日韩精美视频电影| 国产精品妹子av| 欧美成人性福生活免费看| 欧亚一区二区三区| 91视频观看视频| 国产成人免费视频网站| 久久99在线观看| 五月婷婷激情综合| 亚洲影视资源网| 亚洲日本护士毛茸茸| 精品sm捆绑视频| 日韩欧美123| 欧美福利视频一区| 欧美性猛交xxxxxxxx| 99精品视频在线观看免费| 国产一区二区在线观看免费| 日韩av中文在线观看| 亚洲va韩国va欧美va精品| 亚洲男同性视频| 亚洲女与黑人做爰| 亚洲欧美另类久久久精品| 成人免费小视频| 国产精品久久久久久一区二区三区 | 欧美日韩精品一区二区| 99久久久久久| 91免费版pro下载短视频| av在线不卡免费看| 91理论电影在线观看| 色偷偷久久人人79超碰人人澡| 97se亚洲国产综合在线| 9色porny自拍视频一区二区| 国产.精品.日韩.另类.中文.在线.播放| 久久www免费人成看片高清| 久久99精品久久久久久久久久久久| 日韩高清不卡一区二区| 日本va欧美va精品| 国产成人午夜视频| 91色视频在线| 欧美日本在线播放| 精品国一区二区三区| 亚洲国产精品黑人久久久| 亚洲精品国产高清久久伦理二区| 亚洲精品国产无套在线观| 午夜成人在线视频| 蜜臀精品一区二区三区在线观看 | 成人在线视频一区| 色天使色偷偷av一区二区| 欧美日韩在线一区二区| 日韩免费视频一区二区| 国产精品日韩成人| 亚洲一区二区三区不卡国产欧美| 香蕉久久夜色精品国产使用方法| 美女尤物国产一区| 99久久伊人网影院| 欧美性大战久久久久久久蜜臀| 欧美一级搡bbbb搡bbbb| 亚洲国产精品ⅴa在线观看| 亚洲最新在线观看| 九九九久久久精品| 91麻豆蜜桃一区二区三区| 日韩一区二区三区电影在线观看| 中文字幕精品三区| 肉丝袜脚交视频一区二区| 国产精品亚洲一区二区三区妖精| 欧美午夜不卡视频| 欧美激情一区二区三区全黄| 日日摸夜夜添夜夜添精品视频| 福利一区在线观看| 欧美一区二区三区四区五区| 中文字幕在线观看一区| 久久97超碰色| 欧美日韩综合在线免费观看| 国产精品三级电影| 国产一区二区在线观看免费| 欧美色网站导航| 中文字幕亚洲在| 国产精品一区二区久激情瑜伽 | 欧洲亚洲精品在线| 亚洲一区二区三区在线看| 日韩一区欧美二区| 99精品黄色片免费大全| 久久欧美一区二区| 日本成人在线一区| 欧美日韩高清一区二区不卡| 日韩伦理电影网| 国产在线播放一区二区三区 | 欧美亚洲动漫制服丝袜| 国产精品丝袜久久久久久app| 久草精品在线观看| 久久综合五月天婷婷伊人| 伦理电影国产精品| 日韩精品一区二区三区四区| 亚洲香肠在线观看| 欧美午夜精品一区二区三区| 一级女性全黄久久生活片免费| 成人一区二区三区中文字幕| 久久久久久久久久久电影| 国产麻豆精品一区二区| 久久亚洲综合av| 国内精品自线一区二区三区视频| 欧美日韩国产免费一区二区| 亚洲香肠在线观看| 91麻豆精品国产91久久久久| 青娱乐精品在线视频| 久久人人爽人人爽| 成人免费不卡视频| 亚洲精品视频在线看| 在线观看91视频| 日本午夜精品一区二区三区电影| 欧美一区二区精品| 国产精品一级在线| 国产精品国产三级国产普通话三级 | thepron国产精品| 久久亚洲综合av| 亚洲日本青草视频在线怡红院| 国产精品丝袜在线| 一区二区三区在线观看网站| 久久色.com| 一区二区三区丝袜| 午夜精品久久久| 视频一区国产视频| 亚洲综合精品久久| 精品一区二区三区视频在线观看 | 欧美电影免费观看高清完整版在线| 婷婷久久综合九色综合绿巨人| 欧美一区二区美女| 国产不卡视频在线观看| 国产精品福利影院| 欧美一区二区三区免费大片| 国产成人在线视频免费播放| 一区二区三区中文字幕电影 | 东方aⅴ免费观看久久av| 亚洲人吸女人奶水| 日韩欧美国产高清| 色婷婷久久久久swag精品 | 欧洲av在线精品| 精品综合久久久久久8888| 中文字幕av一区 二区| 欧美日韩亚洲综合在线| 国精品**一区二区三区在线蜜桃| 亚洲黄色免费网站| 久久久久久久久免费| 欧美三级在线看| 波多野结衣亚洲一区| 麻豆久久一区二区| 一区二区三区四区视频精品免费| 精品久久久久一区二区国产| 91久久精品一区二区三区| 极品少妇xxxx偷拍精品少妇| 亚洲精品欧美专区| 久久蜜桃av一区二区天堂| 91福利资源站| 国产成人亚洲精品狼色在线| 蜜臀av国产精品久久久久| 一区二区三区四区蜜桃| 中文字幕亚洲在| 国产视频一区在线播放| 日韩欧美色电影| 欧美精品第1页| 精品久久国产老人久久综合| 91丨九色丨蝌蚪丨老版| 国产精华液一区二区三区| 日韩av中文字幕一区二区| 亚洲宅男天堂在线观看无病毒| 国产精品免费久久| 97久久精品人人爽人人爽蜜臀 | 成人av网站在线观看免费| 激情欧美一区二区三区在线观看| 亚洲图片自拍偷拍| 综合久久给合久久狠狠狠97色| 自拍视频在线观看一区二区|