合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

        ECE371編程代做、代寫Python程序設(shè)計(jì)
        ECE371編程代做、代寫Python程序設(shè)計(jì)

        時(shí)間:2025-05-08  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



        ECE371 Neural Networks and Deep Learning
        Assignment 1: Image classification by using deep models
        Due Date: 23:59, 14
        th May, 2025
        This assignment aims to train models for flower classification. You can choose either Colab online
        environment or local environment. This assignment will worth 15% ofthe final grade. Exercise 1: Fine-tune classification model using MMClassification (50%)
        Please complete the fine-tune training based on the pre-training model provided by MMClassification
        (https://github.com/open-mmlab/mmpretrain/tree/1.x). You should:
        1. Prepare the flower datasets. The flower pictures are provided in flower_dataset.zip. The flower dataset contains flowers from 5 categories: daisy 588, dandelion 556, rose 583, sunflower 536 and tulip 585. Please split the dataset into training set and validation set in a ratio
        of 8:2, and organize it into ImageNet format. Detailed steps:
        1) Put the training set and validation set under folders named ‘train’ and ‘val’. 2) Create and edit the category name file. Please write all names flower categories into file
        ‘classes.txt’with each line representing one class. 3) Generate training (optional) and validation sets annotation lists: ‘train.txt’and ‘val.txt’. Each line should contain a filename and its corresponding annotation. Example:
        daisy/NAME**.jpg 0
        daisy/NAME**.jpg 0
        ... dandelion/NAME**.jpg 1
        dandelion/NAME**.jpg 1
        ... rose/NAME**.jpg 2
        rose/NAME**.jpg 2
        ... sunflower/NAME**.jpg 3
        sunflower/NAME**.jpg 3
        ... tulip/NAME**.jpg 4
        tulip/NAME**.jpg 4
        The final file structure should be:
        flower_dataset
        |--- classes.txt
        |--- train.txt
        |--- val.txt
        | |--- train
        | | |--- daisy
        |
        |
        |--- …
        --- dandelion
        |--- NAME1.jpg
        |--- NAME2.jpg
        |--- …
        --- rose
        |--- NAME1.jpg
        |--- NAME2.jpg
        |--- …
        --- sunflower
        |--- NAME1.jpg
        |--- NAME2.jpg
        |--- …
        --- tulip
        |--- NAME1.jpg
        |--- NAME2.jpg
        |--- …
        val --- daisy
        |--- NAME1.jpg
        |--- NAME2.jpg
        |--- …
        --- dandelion
        |--- NAME1.jpg
        |--- NAME2.jpg
        |--- …
        --- rose
        |--- NAME1.jpg
        |--- NAME2.jpg
        |--- …
        --- sunflower
        |--- NAME1.jpg
        |--- NAME2.jpg
        |--- …
        --- tulip
        |--- NAME1.jpg
        |--- NAME2.jpg
        |--- …
        This process can be done using Python or other scripting programs. And it can be completed
        locally/offline to save the Colab’s time online. Once the dataset has been prepared, please migrate the processed dataset to the project folder, (e.g., ./data). To reduce duplicate uploads, you can Sync the data to google drive
        |--- NAME1.jpg
        |--- NAME2.jpg

        and import it in Colab. 2. Modify the configuration file
        Use the _base_ inheritance mechanism to build profiles for fine-tuning, which can be inherited
        and modified from any ImageNet-based profile provided by MMClassification. 1) Modify the model configuration. Change the category header to adapt the model to the
        number of data categories in our flower dataset. 2) Modify the dataset configuration. Change the data paths for the training set, validation set, the list of dataset annotations, and the category name file. And modify the evaluation method
        to use only the top-1 classification error rate. 3) Modify learning rate strategy. Fine-tuning generally uses a smaller learning rate and fewer
        training period. Therefore please change them in configuration file. 4) Configuring pre-trained models. Please find the model file corresponding to the original
        configuration file from Model Zoo. Then download it to Colab or your local environment
        (usually in the checkpointsfolder). Finally you need to configure the path to the pre-trained
        model in the configuration file. 3. Complete the finetune training using tools. Please use tools/train.py to fine-tune the model and specify the work path via the work_dir
        parameter, where the trained model will be stored. Tune the parameters, or use a different pre-trained model to try to get a higher classification
        accuracy. For reference, it is not difficult to achieve classification accuracies above 90% on this
        dataset. Exercise 2: Complete the classification model training script (50%)
        The provided script main.py is a simple PyTorch implement to classify the flower dataset you’ve
        prepared above, but this script is not complete. 1. You’ll be expected to write some code in some code blocks. These are marked at the top of the
        block by a #GRADED FUNCTIONcomment, and you’ll write your code in between the ###
        START SOLUTION HERE ### and ###END SOLUTION HERE### comments. 2. After coding your function, put your flower datasets flower_dataset to the EX2 folder (EX2/
        flower_dataset) and then run this main.py script. 3. If your code is correct, you can obtain the right printed information with loss, learning rate and
        accuracy on validation set, and the best model with the highest validation accuracy will be stored
        in the Ex2/work_dirfolder. 4. You can modify the configuration or the model in main.pyto beat the original result. (optional)
        5. Please write a report with Latex and submit a .pdf file (the main text should not exceed 4
        pages, excluding references). Please use this overleaf template https://www.overleaf.com/read/vjsjkdcwttqp#ffc59a . There are detailed report requirements.
        Submission requirements:
        1. You need to submission all materials to GitHubClassroom. Please create a GitHub account in
        advance. . Later we will provide a link of this assignment, click it and you
        will get an initial repository containing two folders named: Ex1 with flower_dataset.zipin it, and
        Ex2 with main.pyin it. You need to upload all the materials below to your repository:
        1) For exercise 1, please put your configuration file and the saved trained model in Ex1;
        2) For exercise 2, please put your report, completed script file and the saved trained model
        (auto saved in work_dir) in Ex2. 2. Please note that, the teaching assistants may ask you to explain the meaning of the program, to
        ensure that the codes are indeed written by yourself. Plagiarism will not be tolerated. We may
        check your code. 3. The deadline is 23:59 PM, 14
        th May. For each day of late submission, you will lose 10% of your
        mark in corresponding assignment. If you submit more than three days later than the deadline, you
        will receive zero in this assignment. No late submission emails or message will be replied.

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




         

        掃一掃在手機(jī)打開當(dāng)前頁
      1. 上一篇:CPT206代做、代寫Java編程語言
      2. 下一篇:CSC1002代寫、代做Python編程設(shè)計(jì)
      3. 無相關(guān)信息
        合肥生活資訊

        合肥圖文信息
        出評 開團(tuán)工具
        出評 開團(tuán)工具
        挖掘機(jī)濾芯提升發(fā)動機(jī)性能
        挖掘機(jī)濾芯提升發(fā)動機(jī)性能
        戴納斯帝壁掛爐全國售后服務(wù)電話24小時(shí)官網(wǎng)400(全國服務(wù)熱線)
        戴納斯帝壁掛爐全國售后服務(wù)電話24小時(shí)官網(wǎng)
        菲斯曼壁掛爐全國統(tǒng)一400售后維修服務(wù)電話24小時(shí)服務(wù)熱線
        菲斯曼壁掛爐全國統(tǒng)一400售后維修服務(wù)電話2
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國24小時(shí)客服熱線
        美的熱水器售后服務(wù)技術(shù)咨詢電話全國24小時(shí)
        海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
        海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
        合肥機(jī)場巴士4號線
        合肥機(jī)場巴士4號線
        合肥機(jī)場巴士3號線
        合肥機(jī)場巴士3號線
      4. 短信驗(yàn)證碼 酒店vi設(shè)計(jì) 投資移民

        關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 曰韩人妻无码一区二区三区综合部| 中文字幕人妻丝袜乱一区三区| 福利一区二区在线| 久久精品无码一区二区三区不卡| 香蕉一区二区三区观| 亚洲欧美日韩国产精品一区 | 日韩一区二区在线观看视频| 又紧又大又爽精品一区二区| 玩弄放荡人妻一区二区三区| 亚洲狠狠久久综合一区77777| 免费一区二区三区| 制服丝袜一区二区三区| 国产免费一区二区三区不卡 | 亚洲高清一区二区三区 | 在线观看免费视频一区| 国产精品一区二区在线观看| 亚洲国产精品无码第一区二区三区 | 国产精品一区二区久久国产| 国产精品乱码一区二区三区 | 亚洲一区二区三区日本久久九| 无码人妻一区二区三区精品视频| 无码少妇一区二区浪潮免费| 国产一区二区精品久久| 国产亚洲欧洲Aⅴ综合一区| 国模大尺度视频一区二区| 日韩少妇无码一区二区三区| 狠狠做深爱婷婷久久综合一区 | 乱中年女人伦av一区二区| 亚洲av成人一区二区三区观看在线| 精品人体无码一区二区三区 | 日韩精品一区二区三区中文| 91在线看片一区国产| 无码中文字幕人妻在线一区二区三区| 国产精品一级香蕉一区| 精品国产亚洲第一区二区三区| 福利一区二区三区视频午夜观看| 国产成人AV区一区二区三| 中文字幕一区在线播放| 无码午夜人妻一区二区三区不卡视频| 无码av免费一区二区三区| 无码夜色一区二区三区|