99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

ECE371編程代做、代寫Python程序設計
ECE371編程代做、代寫Python程序設計

時間:2025-05-08  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



ECE371 Neural Networks and Deep Learning
Assignment 1: Image classification by using deep models
Due Date: 23:59, 14
th May, 2025
This assignment aims to train models for flower classification. You can choose either Colab online
environment or local environment. This assignment will worth 15% ofthe final grade. Exercise 1: Fine-tune classification model using MMClassification (50%)
Please complete the fine-tune training based on the pre-training model provided by MMClassification
(https://github.com/open-mmlab/mmpretrain/tree/1.x). You should:
1. Prepare the flower datasets. The flower pictures are provided in flower_dataset.zip. The flower dataset contains flowers from 5 categories: daisy 588, dandelion 556, rose 583, sunflower 536 and tulip 585. Please split the dataset into training set and validation set in a ratio
of 8:2, and organize it into ImageNet format. Detailed steps:
1) Put the training set and validation set under folders named ‘train’ and ‘val’. 2) Create and edit the category name file. Please write all names flower categories into file
‘classes.txt’with each line representing one class. 3) Generate training (optional) and validation sets annotation lists: ‘train.txt’and ‘val.txt’. Each line should contain a filename and its corresponding annotation. Example:
daisy/NAME**.jpg 0
daisy/NAME**.jpg 0
... dandelion/NAME**.jpg 1
dandelion/NAME**.jpg 1
... rose/NAME**.jpg 2
rose/NAME**.jpg 2
... sunflower/NAME**.jpg 3
sunflower/NAME**.jpg 3
... tulip/NAME**.jpg 4
tulip/NAME**.jpg 4
The final file structure should be:
flower_dataset
|--- classes.txt
|--- train.txt
|--- val.txt
| |--- train
| | |--- daisy
|
|
|--- …
--- dandelion
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- rose
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- sunflower
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- tulip
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
val --- daisy
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- dandelion
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- rose
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- sunflower
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
--- tulip
|--- NAME1.jpg
|--- NAME2.jpg
|--- …
This process can be done using Python or other scripting programs. And it can be completed
locally/offline to save the Colab’s time online. Once the dataset has been prepared, please migrate the processed dataset to the project folder, (e.g., ./data). To reduce duplicate uploads, you can Sync the data to google drive
|--- NAME1.jpg
|--- NAME2.jpg

and import it in Colab. 2. Modify the configuration file
Use the _base_ inheritance mechanism to build profiles for fine-tuning, which can be inherited
and modified from any ImageNet-based profile provided by MMClassification. 1) Modify the model configuration. Change the category header to adapt the model to the
number of data categories in our flower dataset. 2) Modify the dataset configuration. Change the data paths for the training set, validation set, the list of dataset annotations, and the category name file. And modify the evaluation method
to use only the top-1 classification error rate. 3) Modify learning rate strategy. Fine-tuning generally uses a smaller learning rate and fewer
training period. Therefore please change them in configuration file. 4) Configuring pre-trained models. Please find the model file corresponding to the original
configuration file from Model Zoo. Then download it to Colab or your local environment
(usually in the checkpointsfolder). Finally you need to configure the path to the pre-trained
model in the configuration file. 3. Complete the finetune training using tools. Please use tools/train.py to fine-tune the model and specify the work path via the work_dir
parameter, where the trained model will be stored. Tune the parameters, or use a different pre-trained model to try to get a higher classification
accuracy. For reference, it is not difficult to achieve classification accuracies above 90% on this
dataset. Exercise 2: Complete the classification model training script (50%)
The provided script main.py is a simple PyTorch implement to classify the flower dataset you’ve
prepared above, but this script is not complete. 1. You’ll be expected to write some code in some code blocks. These are marked at the top of the
block by a #GRADED FUNCTIONcomment, and you’ll write your code in between the ###
START SOLUTION HERE ### and ###END SOLUTION HERE### comments. 2. After coding your function, put your flower datasets flower_dataset to the EX2 folder (EX2/
flower_dataset) and then run this main.py script. 3. If your code is correct, you can obtain the right printed information with loss, learning rate and
accuracy on validation set, and the best model with the highest validation accuracy will be stored
in the Ex2/work_dirfolder. 4. You can modify the configuration or the model in main.pyto beat the original result. (optional)
5. Please write a report with Latex and submit a .pdf file (the main text should not exceed 4
pages, excluding references). Please use this overleaf template https://www.overleaf.com/read/vjsjkdcwttqp#ffc59a . There are detailed report requirements.
Submission requirements:
1. You need to submission all materials to GitHubClassroom. Please create a GitHub account in
advance. . Later we will provide a link of this assignment, click it and you
will get an initial repository containing two folders named: Ex1 with flower_dataset.zipin it, and
Ex2 with main.pyin it. You need to upload all the materials below to your repository:
1) For exercise 1, please put your configuration file and the saved trained model in Ex1;
2) For exercise 2, please put your report, completed script file and the saved trained model
(auto saved in work_dir) in Ex2. 2. Please note that, the teaching assistants may ask you to explain the meaning of the program, to
ensure that the codes are indeed written by yourself. Plagiarism will not be tolerated. We may
check your code. 3. The deadline is 23:59 PM, 14
th May. For each day of late submission, you will lose 10% of your
mark in corresponding assignment. If you submit more than three days later than the deadline, you
will receive zero in this assignment. No late submission emails or message will be replied.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:CPT206代做、代寫Java編程語言
  • 下一篇:CSC1002代寫、代做Python編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                亚洲va韩国va欧美va精品| 99精品视频中文字幕| 欧美成人精品1314www| 97久久精品人人爽人人爽蜜臀| 国产精品黄色在线观看| 久久奇米777| 久久先锋影音av鲁色资源网| 精品日韩成人av| 国产亚洲精品7777| 国产精品美女久久久久久久网站| 国产日本欧美一区二区| 国产午夜精品一区二区三区视频| 久久蜜桃av一区二区天堂| 欧美一区二区视频在线观看2022| 欧美丰满嫩嫩电影| 久久久国际精品| |精品福利一区二区三区| 日韩一区欧美一区| 轻轻草成人在线| 国产成人丝袜美腿| 欧美日韩黄色影视| 欧美一级高清片在线观看| 久久久国产精品午夜一区ai换脸| 亚洲人精品一区| 精品一区二区三区香蕉蜜桃| 99国产精品99久久久久久| 欧美一区二视频| 亚洲婷婷综合色高清在线| 色婷婷综合久久久中文一区二区| 久久久久久久久久美女| 国产亚洲va综合人人澡精品| 国产精品私人自拍| 精品夜夜嗨av一区二区三区| 国产suv精品一区二区6| 日韩欧美卡一卡二| 亚洲在线视频一区| 成人app软件下载大全免费| 欧美高清视频一二三区| 欧美国产禁国产网站cc| 蜜臀久久99精品久久久画质超高清| av一本久道久久综合久久鬼色| 91精品欧美久久久久久动漫| 国产精品视频免费| 成人免费视频一区| 国产精品日日摸夜夜摸av| 麻豆成人久久精品二区三区小说| 91国偷自产一区二区三区观看 | 亚洲电影第三页| 91国产免费观看| 亚洲精品日日夜夜| 久久66热re国产| 色婷婷av一区二区三区大白胸| 成人免费视频在线观看| 欧美综合在线视频| 久久国产生活片100| 国产性做久久久久久| 91蜜桃免费观看视频| 天天色天天爱天天射综合| 欧美福利视频导航| 国产裸体歌舞团一区二区| 亚洲欧美成aⅴ人在线观看| 欧美日韩精品电影| 成人自拍视频在线观看| 亚洲成人精品一区二区| 久久免费精品国产久精品久久久久| 国产九色sp调教91| 一区二区三区在线高清| 日韩一区二区三区视频| 91麻豆免费看| 国产乱人伦偷精品视频免下载| 国产精品久久久久久亚洲毛片 | 九色|91porny| 久久久久久久久久久久电影| 国产成人精品免费| 欧美在线观看18| jiyouzz国产精品久久| 亚洲一二三四久久| 久久久综合视频| 欧美日韩一区精品| 91日韩一区二区三区| 奇米色777欧美一区二区| 亚洲人成小说网站色在线| 亚洲丝袜美腿综合| wwwwxxxxx欧美| 欧美性大战久久久久久久蜜臀| 韩国精品一区二区| 亚洲影院免费观看| 亚洲色图欧美在线| 日本一区二区三区在线观看| 成人福利视频在线| 99在线精品免费| 国产成人精品免费看| 国产一区二区成人久久免费影院| 午夜精品一区二区三区免费视频| 国产三级三级三级精品8ⅰ区| 欧美一级二级三级蜜桃| 在线播放欧美女士性生活| 日韩亚洲电影在线| 国产亚洲精品中文字幕| 亚洲精品在线电影| 久久久久久久久一| 国产精品久久久久婷婷二区次| 久久久久久久久99精品| 久久久99久久| 欧美成人女星排行榜| 国产午夜亚洲精品不卡| 2020国产成人综合网| 国产清纯白嫩初高生在线观看91| 国产亚洲综合av| 亚洲福利国产精品| 久久国产精品一区二区| 成人免费三级在线| 欧美日本在线播放| 中文一区在线播放| 偷窥国产亚洲免费视频| 成人av片在线观看| 欧美一区永久视频免费观看| 国产精品网站导航| 国产精品美女久久久久久久久 | 欧美日韩第一区日日骚| 久久久久久久电影| 午夜精品免费在线| 日韩精品免费视频人成| 国产精品一区二区视频| 欧美日韩国产乱码电影| 亚洲桃色在线一区| 国产成人av电影| 成人avav在线| 亚洲一二三四区不卡| 91在线视频免费观看| 国产精品久久毛片av大全日韩| 精品一区免费av| 欧美成人精品1314www| 国产精品免费网站在线观看| 成人18视频日本| 国产精品久久久久久久久免费樱桃 | 天堂va蜜桃一区二区三区| 国产91对白在线观看九色| 国产suv精品一区二区6| 亚洲欧美成人一区二区三区| 北条麻妃一区二区三区| 国产精品久久看| 岛国av在线一区| 欧美日韩一区二区在线观看| 美洲天堂一区二卡三卡四卡视频 | 国产亚洲精品免费| 在线观看日韩毛片| 日韩精品国产欧美| 日本一区二区视频在线| 高清国产一区二区三区| 一区二区三区日韩欧美精品| 北岛玲一区二区三区四区| 亚洲欧洲成人精品av97| 在线免费观看不卡av| 1000部国产精品成人观看| 久久久综合精品| 欧美日韩一区二区在线视频| 国产精品综合av一区二区国产馆| 中文字幕不卡的av| 日韩一区二区三区观看| 97精品久久久久中文字幕| 日本va欧美va欧美va精品| 久久精品视频在线看| 欧美日韩成人综合天天影院| 国产91在线|亚洲| 欧美日韩一级大片网址| 欧美中文一区二区三区| 秋霞影院一区二区| 亚洲va欧美va人人爽| 亚洲国产一区二区视频| 亚洲欧美怡红院| 国产高清久久久久| 中文字幕一区二区视频| 欧美精品日韩综合在线| 成人小视频在线| 亚洲另类一区二区| 日韩免费高清av| 国产日韩欧美一区二区三区乱码| 欧美日韩第一区日日骚| 色一区在线观看| 97成人超碰视| 欧美日本韩国一区二区三区视频 | 久久亚洲综合av| 综合电影一区二区三区 | 天天综合色天天| 欧美日韩一区二区电影| 日韩免费高清av| 亚洲精品一区二区三区香蕉| 久久这里只有精品视频网| 精品国产第一区二区三区观看体验| 亚洲精品一区二区三区香蕉| 亚洲综合另类小说| 久久91精品国产91久久小草| 国产成人免费高清| 在线影院国内精品| 成人avav影音| 国产精品美女久久久久久| 国产精品久久久爽爽爽麻豆色哟哟| 国产精品夫妻自拍| 免费看日韩a级影片|