合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

        ECE371編程代做、代寫Python程序設計
        ECE371編程代做、代寫Python程序設計

        時間:2025-05-08  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



        ECE371 Neural Networks and Deep Learning
        Assignment 1: Image classification by using deep models
        Due Date: 23:59, 14
        th May, 2025
        This assignment aims to train models for flower classification. You can choose either Colab online
        environment or local environment. This assignment will worth 15% ofthe final grade. Exercise 1: Fine-tune classification model using MMClassification (50%)
        Please complete the fine-tune training based on the pre-training model provided by MMClassification
        (https://github.com/open-mmlab/mmpretrain/tree/1.x). You should:
        1. Prepare the flower datasets. The flower pictures are provided in flower_dataset.zip. The flower dataset contains flowers from 5 categories: daisy 588, dandelion 556, rose 583, sunflower 536 and tulip 585. Please split the dataset into training set and validation set in a ratio
        of 8:2, and organize it into ImageNet format. Detailed steps:
        1) Put the training set and validation set under folders named ‘train’ and ‘val’. 2) Create and edit the category name file. Please write all names flower categories into file
        ‘classes.txt’with each line representing one class. 3) Generate training (optional) and validation sets annotation lists: ‘train.txt’and ‘val.txt’. Each line should contain a filename and its corresponding annotation. Example:
        daisy/NAME**.jpg 0
        daisy/NAME**.jpg 0
        ... dandelion/NAME**.jpg 1
        dandelion/NAME**.jpg 1
        ... rose/NAME**.jpg 2
        rose/NAME**.jpg 2
        ... sunflower/NAME**.jpg 3
        sunflower/NAME**.jpg 3
        ... tulip/NAME**.jpg 4
        tulip/NAME**.jpg 4
        The final file structure should be:
        flower_dataset
        |--- classes.txt
        |--- train.txt
        |--- val.txt
        | |--- train
        | | |--- daisy
        |
        |
        |--- …
        --- dandelion
        |--- NAME1.jpg
        |--- NAME2.jpg
        |--- …
        --- rose
        |--- NAME1.jpg
        |--- NAME2.jpg
        |--- …
        --- sunflower
        |--- NAME1.jpg
        |--- NAME2.jpg
        |--- …
        --- tulip
        |--- NAME1.jpg
        |--- NAME2.jpg
        |--- …
        val --- daisy
        |--- NAME1.jpg
        |--- NAME2.jpg
        |--- …
        --- dandelion
        |--- NAME1.jpg
        |--- NAME2.jpg
        |--- …
        --- rose
        |--- NAME1.jpg
        |--- NAME2.jpg
        |--- …
        --- sunflower
        |--- NAME1.jpg
        |--- NAME2.jpg
        |--- …
        --- tulip
        |--- NAME1.jpg
        |--- NAME2.jpg
        |--- …
        This process can be done using Python or other scripting programs. And it can be completed
        locally/offline to save the Colab’s time online. Once the dataset has been prepared, please migrate the processed dataset to the project folder, (e.g., ./data). To reduce duplicate uploads, you can Sync the data to google drive
        |--- NAME1.jpg
        |--- NAME2.jpg

        and import it in Colab. 2. Modify the configuration file
        Use the _base_ inheritance mechanism to build profiles for fine-tuning, which can be inherited
        and modified from any ImageNet-based profile provided by MMClassification. 1) Modify the model configuration. Change the category header to adapt the model to the
        number of data categories in our flower dataset. 2) Modify the dataset configuration. Change the data paths for the training set, validation set, the list of dataset annotations, and the category name file. And modify the evaluation method
        to use only the top-1 classification error rate. 3) Modify learning rate strategy. Fine-tuning generally uses a smaller learning rate and fewer
        training period. Therefore please change them in configuration file. 4) Configuring pre-trained models. Please find the model file corresponding to the original
        configuration file from Model Zoo. Then download it to Colab or your local environment
        (usually in the checkpointsfolder). Finally you need to configure the path to the pre-trained
        model in the configuration file. 3. Complete the finetune training using tools. Please use tools/train.py to fine-tune the model and specify the work path via the work_dir
        parameter, where the trained model will be stored. Tune the parameters, or use a different pre-trained model to try to get a higher classification
        accuracy. For reference, it is not difficult to achieve classification accuracies above 90% on this
        dataset. Exercise 2: Complete the classification model training script (50%)
        The provided script main.py is a simple PyTorch implement to classify the flower dataset you’ve
        prepared above, but this script is not complete. 1. You’ll be expected to write some code in some code blocks. These are marked at the top of the
        block by a #GRADED FUNCTIONcomment, and you’ll write your code in between the ###
        START SOLUTION HERE ### and ###END SOLUTION HERE### comments. 2. After coding your function, put your flower datasets flower_dataset to the EX2 folder (EX2/
        flower_dataset) and then run this main.py script. 3. If your code is correct, you can obtain the right printed information with loss, learning rate and
        accuracy on validation set, and the best model with the highest validation accuracy will be stored
        in the Ex2/work_dirfolder. 4. You can modify the configuration or the model in main.pyto beat the original result. (optional)
        5. Please write a report with Latex and submit a .pdf file (the main text should not exceed 4
        pages, excluding references). Please use this overleaf template https://www.overleaf.com/read/vjsjkdcwttqp#ffc59a . There are detailed report requirements.
        Submission requirements:
        1. You need to submission all materials to GitHubClassroom. Please create a GitHub account in
        advance. . Later we will provide a link of this assignment, click it and you
        will get an initial repository containing two folders named: Ex1 with flower_dataset.zipin it, and
        Ex2 with main.pyin it. You need to upload all the materials below to your repository:
        1) For exercise 1, please put your configuration file and the saved trained model in Ex1;
        2) For exercise 2, please put your report, completed script file and the saved trained model
        (auto saved in work_dir) in Ex2. 2. Please note that, the teaching assistants may ask you to explain the meaning of the program, to
        ensure that the codes are indeed written by yourself. Plagiarism will not be tolerated. We may
        check your code. 3. The deadline is 23:59 PM, 14
        th May. For each day of late submission, you will lose 10% of your
        mark in corresponding assignment. If you submit more than three days later than the deadline, you
        will receive zero in this assignment. No late submission emails or message will be replied.

        請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




         

        掃一掃在手機打開當前頁
      1. 上一篇:CPT206代做、代寫Java編程語言
      2. 下一篇:CSC1002代寫、代做Python編程設計
      3. 無相關信息
        合肥生活資訊

        合肥圖文信息
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        急尋熱仿真分析?代做熱仿真服務+熱設計優化
        出評 開團工具
        出評 開團工具
        挖掘機濾芯提升發動機性能
        挖掘機濾芯提升發動機性能
        海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
        海信羅馬假日洗衣機亮相AWE 復古美學與現代
        合肥機場巴士4號線
        合肥機場巴士4號線
        合肥機場巴士3號線
        合肥機場巴士3號線
        合肥機場巴士2號線
        合肥機場巴士2號線
        合肥機場巴士1號線
        合肥機場巴士1號線
      4. 短信驗證碼 酒店vi設計 NBA直播 幣安下載

        關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

        Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
        ICP備06013414號-3 公安備 42010502001045

        主站蜘蛛池模板: 一区二区免费国产在线观看| 香蕉久久一区二区不卡无毒影院| 日本一区二区三区免费高清在线| 国产传媒一区二区三区呀| 欧洲精品码一区二区三区| 一区二区三区影院| 久久精品一区二区影院| 综合激情区视频一区视频二区| 精品亚洲AV无码一区二区| 国产精品熟女一区二区| 亚洲av午夜福利精品一区人妖| 亚洲国产成人久久一区WWW| 国产精品亚洲综合一区在线观看| 无码精品黑人一区二区三区| 精品国产一区二区三区久久| 国产一区二区三区免费观看在线| 久久久不卡国产精品一区二区 | 99久久精品日本一区二区免费| 精品国产一区二区三区免费| 中文字幕人妻丝袜乱一区三区| 精品日本一区二区三区在线观看| 国产激情一区二区三区在线观看 | 国产一区美女视频| 国产一区二区三区亚洲综合| 天堂va视频一区二区| 国产在线观看一区二区三区| 天天看高清无码一区二区三区| 美女视频一区二区三区| 一区二区精品在线观看| 亚洲无线码在线一区观看| 精品少妇一区二区三区视频| 国产一区二区三区在线看| 少妇特黄A一区二区三区| 曰韩人妻无码一区二区三区综合部| 亚洲码欧美码一区二区三区 | 无码少妇一区二区| 亚洲综合无码一区二区痴汉| 精品国产精品久久一区免费式 | 国产乱人伦精品一区二区| 日本一区二区三区日本免费| 国产精品女同一区二区久久|