99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

COMP2051代做、代寫C/C++,Python編程

時間:2024-04-11  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 1
Artificial Intelligence Methods (COMP2051 or AE2AIM)
Prof. Ruibin Bai Spring 2024
Coursework: Perturbative hyper-heuristic for Bin Packing Problem
1. Introduction
Bin packing is one of the most studied combinatorial optimisation problems and has
applications in logistics, space planning, production, cloud computing, etc. Bin packing is
proven to be NP-Hard and the actual difficulties depend on both the size of the problem (i.e.
the total number of items to be packed) and other factors like the distribution of item sizes in
relation to the bin size as well as the number of distinct item sizes (different items may have a
same size).
In this coursework, you are asked to write a C/C++/Python program to solve this problem
using a perturbative hyper-heuristic method. In addition to submitting source code, a
written report (no more than 2000 words and 6 pages) is required to describe your algorithm
(see Section 4 for detailed requirements). Both your program and report must be completed
independently by yourself. The submitted documents must successfully pass a plagiarism
checker before they can be marked. Once a plagiarism case is established, the academic
misconduct policies shall be applied strictly.
This coursework carries 45% of the module marks.
2. Bin Packing Problem (BPP)
Given a set of n items, each item j has a size of aj, BPP aims to pack all items in the
minimum number of identical sized bins without violating the capacity of bins (V). The
problem can be mathematically formulated as follow:
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 2
This mathematical formulation is generally NOT solvable by existing integer programming
solvers like CPlex, Gurobi, LPSolve, especially when the number of items n is large. The
solution space of bin packing problem is characterised by its huge size and plateau-like that
makes it very challenging for traditional neighbourhood search methods. In order to
consistently solve the problem with good quality solutions, metaheuristics and hyperheuristics are used, which is the task of this coursework.
3. Problem instances
Over the years, a large number of BPP instances have been introduced by various research.
See https://www.euro-online.org/websites/esicup/data-sets/ for a collection of different bin
packing problem. In this coursework, we shall provide 3 instances files (binpack1.txt,
binpack3.txt and binpack11.txt), respectively representing easy, medium and hard instances.
From which 10 instances shall be selected for testing and evaluation of your algorithm in
marking. For each test instance, only 1 run is executed, and its objective value is used for
marking the performance component (see Section 5).
4. Experiments conditions and submission requirements
The following requirements should be satisfied by your program:
(1) You are required to submit two files exactly. The first file should contain all your
program source codes. The second file is a coursework report. Please do NOT
compress the files.
(2) Your source code should adopt a clean structure and be properly commented.
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 3
(3) Your report should include the followings:
• The main components of the algorithm, including solution encoding, fitness
function, list of low-level heuristics as well as considerations regarding the
intensification and diversification mechanisms. (12 marks).
• Statistical results (avg, best, worst of 5 runs) of the algorithm for all the problem
instances, in comparison with the best published results (i.e. the absolute gap to
the best results). Note that although your report should include results for 5 runs
but your final submission should only have one single run for each instance (i.e.
if you use the sketch code from the lab, set global variable NUM_OF_RUNS=1
before you submit the code). (3 marks)
• A short discussion/reflection on results and performance of the algorithm. (5
marks)
(4) Name your program file after your student id. For example, if your student number
is 2019560, name your program as 2019560.c (or 2019560.cpp, or 2019560.py).
(5) Your program should compile and run without errors on either CSLinux Server or a
computer in the IAMET**. Therefore, please fully tested before submission. You
may use one of the following commands (assuming your student id is 2019560 and
your program is named after your id):
 gcc -std=c99 -lm 2019560.c -o 2019560
or
 g++ -std=c++11 -lm 2019560.cpp -o 2019560
For Python programs, this second can be skipped.
(6) After compilation, your program should be executable using the following
command:
 ./2019560 -s data_fle -o solution_file -t max_time
where 2019560 is the executable file of your program, data_file is one of
problem instance files specified in Section 3. max_time is the maximum time
permitted for a single run of your algorithm. In this coursework, maximum of 30
seconds is permitted. soluton_file is the file for output the best solutions by
your algorithm. The format should be as follows:
# of problems
Instance_id1
obj= objective_value abs_gap
item_indx in bin0
item_indx in bin1
… …
Instance_id2
obj= objective_value abs_gap
item_indx in bin0
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 4
item_indx in bin1
… …
An example solution file for problem data file “binpack1.txt” is available on
moodle.
For submissions using Python, the compilation and running are combined in one
command as follows:
 python 2019560.py -s data_fle -o solution_file -t max_time
(7) The solution file output in (6) by your algorithm (solution_file) is expected to
pass a solution checking test successfully using the following command on
CSLInux:
 ./bpp_checker -s problem_file -c solution_file
where problem_file is one of problem data files in Section 3. If your solution file
format is correct, you should get a command line message similar to: “Your total score
out of 20 instances is: 80." If the solutions are infeasible for some instances, you would
get error messages.
The solution checker can be downloaded from moodle page. It is runnable only on
CSLinux.
(8) Your algorithm should run only ONCE for each problem instance and each run
should take no more than 30 seconds.
(9) Please carefully check the memory management in your program and test your
algorithm with a full run on CSLinux (i.e. running multiple instances in one go). In
the past, some submitted programs can run for **2 instances but then crashed
because of out-of-memory error. This, if happens, will greatly affect your score.
(10) You must strictly follow policies and regulations related to Plagiarism. You are
prohibited from using recent AI tools like ChatGPT/GPT-4 or other similar large
language models (LLMs). Once a case is established, it will be treated as a
plagiarism case and relevant policies and penalties shall be applied.
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 5
5. Marking criteria
• The quality of the experimental results (20 marks). Your algorithm shall be tested for
a file containing 10 instances chosen from the provided set of instances. The
performance of your algorithm is evaluated by computing the absolute gap with the
best known results using
   _    =     _       _          −     _     _         
Criteria Mark
abs_gap < 0 New best results! Bonus: 2 extra marks for
each new best result.
abs_gap <= 0 2 marks per instance
0<abs_gap <=1 1.5 marks per instance
1<abs_gap<=2 1 mark per instance
2< abs_gap <=3 0.5 mark per instance
• abs_gap >4 or
• infeasible solution or
• fail to output solution
within required time limit
0 mark
• The quality of codes, including organisation of the functions/methods, naming
conventions and clarity and succinctness of the comments (5 marks)
• Report (20 marks)
6. Submission deadline
3rd May 2024, 4pm Beijing Time
 Standard penalties are applied for late submissions.
7. How to submit
Submit via Moodle.
8. Practical Hints
• Solution encoding for bin packing is slightly more challenging compared with
knapsack program because both the number of bins to be used and the number of
items to be packed in each bin are parts of decisions to be optimised. Therefore, the
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.**
data structure that is used to hold the packing information cannot be implemented via
fixed-size arrays. You may consider to use vector from C++ STL (standard template
library) which requires you to include <vector.h> as header file. If you prefer C style
without classes, the following data type would be also acceptable:
struct bin_struct {
 std::vector<item_struct> packed_items;
 int cap_left;
};
struct solution_struct {
 struct problem_struct* prob; //maintain a shallow copy of problem data
 float objective;
 int feasibility; //indicate the feasibility of the solution
 std::vector<bin_struct> bins;
};
In this way, you could open/close bins and at the same time to add/remove items for a
specific bin through API functions provided by the vector library.
• The search space of bin packing problem has a lot of plateaus that make the problem
extremely difficult for simple neighbourhood methods. Therefore, multiple low-level
heuristics are suggested within a perturbative hyper-heuristic method. You are free to
select any of the perturbative hyper-heuristic methods described in
(https://link.springer.com/article/10.1007/s10288-01**0182-8), as well as some of the
more recent ones
(https://www.sciencedirect.com/science/article/pii/S0377221719306526).
• Your algorithm must be runnable on CSLinux and/or computers on IAMET**.
Therefore, you are not permitted to use external libraries designed specifically for
optimisation. 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當(dāng)前頁
  • 上一篇:越南駕駛證簽證辦理(越南駕照的有效期)
  • 下一篇:FIT1047代做、Python/c++程序語言代寫
  • ·代做SWEN20003、代寫C/C++,python編程語
  • ·QBUS6820代做、Python編程語言代寫
  • ·代寫CMSE11475、代做Java/Python編程
  • ·代寫CPSC 217、代做python編程設(shè)計
  • ·代寫CMSC 323、代做Java/Python編程
  • ·CMSC 323代做、代寫Java, Python編程
  • ·CS170程序代做、Python編程設(shè)計代寫
  • ·COM3524代做、代寫Java,Python編程設(shè)計
  • · Root finding part代做、代寫c++,Python編程語言
  • ·代寫ECS 120、代做Java/Python編程設(shè)計
  • 合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                一区二区三区四区在线免费观看| 无码av免费一区二区三区试看| 日韩视频一区在线观看| 在线视频你懂得一区| 欧美综合在线视频| 欧美第一区第二区| 国产精品视频免费看| 中文字幕一区二区5566日韩| 国产精品女主播av| 亚洲制服欧美中文字幕中文字幕| 午夜欧美电影在线观看| 国产精品欧美久久久久一区二区| 亚洲国产精品成人久久综合一区| 中文字幕日韩一区| 九九九精品视频| 69堂精品视频| 亚洲国产精品久久久久婷婷884 | 欧美亚洲一区三区| 成人动漫在线一区| 成a人片国产精品| 九色综合国产一区二区三区| 久久91精品国产91久久小草| 精品一区免费av| 亚洲男同性恋视频| 国产色91在线| 亚洲欧美日本在线| 亚洲婷婷综合久久一本伊一区| 亚洲电影你懂得| 国产一区二区三区av电影| 国产一区二区网址| 国产精品久久久久一区二区三区 | 一区二区三区中文在线| 盗摄精品av一区二区三区| wwwwxxxxx欧美| 国产精品一级黄| 国产精品欧美久久久久无广告 | 亚洲欧洲日韩一区二区三区| 麻豆精品一区二区三区| 欧美日韩色一区| 首页欧美精品中文字幕| 3d成人动漫网站| 久草中文综合在线| 国产亚洲人成网站| 91国产福利在线| 久久66热re国产| 精品久久久久久久久久久久久久久| 麻豆国产一区二区| 国产伦精品一区二区三区免费| 精品一区二区精品| 欧美性色aⅴ视频一区日韩精品| 亚洲免费观看高清完整版在线观看 | 亚洲综合偷拍欧美一区色| 欧美日韩国产免费一区二区 | 国产精品乱码妇女bbbb| 欧美日韩一区二区三区四区五区| 九九视频精品免费| 午夜一区二区三区在线观看| 国产午夜精品一区二区三区视频| 欧美日韩一级片在线观看| 国产精品1024| 国产综合色精品一区二区三区| 亚洲在线视频一区| 国产精品私人影院| 国产亚洲精品aa| 91麻豆精品国产| 色国产精品一区在线观看| 国产一区二区三区免费在线观看| 亚洲一区二区三区四区的| 国产亚洲视频系列| 久久亚洲捆绑美女| 日韩视频一区二区| 欧美一级欧美三级在线观看 | 欧美三级电影网| 色婷婷久久久综合中文字幕| 97久久精品人人澡人人爽| 99久久免费精品| 色婷婷亚洲综合| 欧美久久久久中文字幕| 91精品福利在线一区二区三区| 日韩一区二区三区免费看| 欧美成人三级电影在线| 国产亚洲成aⅴ人片在线观看| 国产精品色在线| 亚洲精品美腿丝袜| 蜜臀av在线播放一区二区三区| 国产美女精品人人做人人爽| 国模冰冰炮一区二区| 成人avav影音| 欧美午夜一区二区三区免费大片| 欧美日韩激情一区二区| 国产日韩欧美不卡| 亚洲午夜羞羞片| 韩日av一区二区| 欧美在线观看视频一区二区 | 国产精品国产自产拍高清av王其| 欧美成人女星排行榜| 国产伦精品一区二区三区免费| av一二三不卡影片| 欧美性一区二区| 国产精品自拍三区| 日本韩国欧美三级| 91美女福利视频| 在线播放日韩导航| 欧美亚洲国产怡红院影院| 福利一区福利二区| aaa国产一区| 日韩精品一区二区三区在线观看| 在线成人午夜影院| 亚洲综合av网| 免费观看日韩电影| 波多野结衣的一区二区三区| 欧美中文字幕亚洲一区二区va在线 | 欧美一区二视频| 国产精品毛片高清在线完整版| 亚洲妇熟xx妇色黄| 亚洲韩国一区二区三区| 久久精品一区四区| 欧美一级艳片视频免费观看| 色老汉一区二区三区| 欧美中文字幕一区| av在线这里只有精品| 国产在线精品不卡| 99视频国产精品| 国产成人免费在线观看| 国产一区二区三区高清播放| 日韩不卡一二三区| 蜜臀av性久久久久蜜臀aⅴ四虎 | 欧美无砖专区一中文字| 久久99久国产精品黄毛片色诱| 日本欧美在线看| 国产成人综合亚洲网站| 91精品婷婷国产综合久久竹菊| 国产精品系列在线| 福利电影一区二区三区| 精品人在线二区三区| 亚洲色图欧美在线| 成人永久aaa| 亚洲国产精品成人综合色在线婷婷| 国内精品国产三级国产a久久| 精品福利在线导航| 日韩激情一区二区| 99re6这里只有精品视频在线观看| 91精品国产品国语在线不卡| 亚洲精品欧美专区| 欧美日韩一区三区四区| 五月天激情小说综合| 欧美日韩国产另类不卡| 天堂资源在线中文精品| 欧美亚洲一区二区三区四区| 亚洲伦在线观看| 久久成人免费日本黄色| 久久精品人人做人人综合| 国产一区91精品张津瑜| 欧美群妇大交群中文字幕| 日韩黄色免费电影| 精品国产免费久久| 一本色道久久综合精品竹菊| 性欧美疯狂xxxxbbbb| 欧美一区二区三区免费大片| 美腿丝袜在线亚洲一区| 久久久噜噜噜久久人人看| 91视频免费看| 国产制服丝袜一区| 蜜桃91丨九色丨蝌蚪91桃色| 久久久美女艺术照精彩视频福利播放 | 婷婷亚洲久悠悠色悠在线播放| 在线免费观看日本欧美| 亚洲aaa精品| 日韩精品一区二| 99精品热视频| 国产91在线看| 国产麻豆精品在线| 午夜在线电影亚洲一区| 日韩精品一区二区三区四区| 91视视频在线直接观看在线看网页在线看 | 一区二区三区不卡视频在线观看| 欧美肥妇bbw| 色天天综合色天天久久| 久久国产精品色| 老司机午夜精品| 国产精品一级在线| 午夜精品视频一区| 国产精品乱码人人做人人爱 | 欧美日本精品一区二区三区| 婷婷国产在线综合| 亚洲人成网站在线| 国产日韩欧美在线一区| 国产清纯在线一区二区www| 久久亚洲一区二区三区四区| 国产日韩精品一区二区三区| 日韩视频免费观看高清完整版在线观看 | 在线视频你懂得一区二区三区| 日韩电影免费在线观看网站| 中文字幕一区二| 中文字幕二三区不卡| 午夜精品久久久久久不卡8050| 综合色天天鬼久久鬼色| 伊人开心综合网| 亚洲午夜免费电影| 欧美v亚洲v综合ⅴ国产v|