99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

代寫159.740編程、代做c/c++,Python程序
代寫159.740編程、代做c/c++,Python程序

時間:2024-11-04  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯



159.740 Intelligent Systems
Assignment #2 
N.H.Reyes 
Letter Recognition using Deep Neural Nets with Softmax Units 
Deadline: 4th of November 
Instructions: 
You are allowed to work in a group of 2 members for this assignment. 
Your task is to write a program that implements and tests a multi-layer feed-forward network for 
recognising characters defined in the UCI machine learning repository: 
http://archive.ics.uci.edu/ml/datasets/Letter+Recognition
Requirements: 
1. Use QT to develop your Neural Network application. A short tutorial on QT, and a start-up 
code that will help you get started quickly with the assignment is provided via Stream. 
2. You may utilise/consult codes available in books and websites provided that you cite them 
properly, explain the codes clearly, and incorporate them with the start-up codes provided. 
3. Implement a multi-layer feed-forward network using backpropagation learning and test it on the 
given problem domain using different network configurations and parameter settings. There 
should be at least 2 hidden layers in your neural network. 
h21 h11 X1
X2
F1
F2 h12 h22
OF1
OF2
δh21
δh22 δh12
δf1
δf2
δh11
… … … … 
X16
Fm Hi Hj
OFm
Input node
Legend: 
hidden node
output node = softmax unit
 Note that all nodes, except the input nodes have a bias node attached to it. 
159.740 Intelligent Systems
Assignment #2 
N.H.Reyes 
A. Inputs 
 16 primitive numerical attributes (statistical moments and edge counts) 
 The input values in the data set have been scaled to fit into a range of integer values 
from 0 through 15. It is up to you if you want to normalise the inputs before feeding 
them to your network. 
B. Data sets 
 Use the data set downloadable from: 
 Training set: use the first 16,000 
 Test set/Validation set: use the remaining 4,000 
 Submit your training data, validation/test data in separate files. 
C. Performance measure: 
 Mean Squared Error (MSE) 
 Percentage of Good Classification (PGC) 
 Confusion Matrix (only for the best Neural Network configuration found) 
D. Training 
 Provide a facility for shuffling data before feeding it to the network during training 
 Provide a facility for continuing network training after loading weights from file (do not 
reset the weights). 
 Provide a facility for training the network continuously until either the maximum 
epochs have been reached, or the target percentage of good classification has been met. 
 For each training epoch, record the Mean Squared Error and the Percentage of Good 
Classification in a text file. You need this to plot the results of training later, to 
compare the effects of the parameter settings and the architecture of your network. 
E. Testing the Network 
 Calculate the performance of the network on the Test set in terms of both the MSE and 
PGC. 
F. Network Architecture 
 It is up to you to determine the number of hidden layers and number of hidden nodes 
per hidden layer in your network. The minimum number of hidden layers is 2. 
 Use softmax units at the output layer 
 Experiment with ReLU and tanh as the activation functions of your hidden units 
 Determine the weight-update formulas based on the activation functions used 
4. Provide an interface in your program for testing the network using an input string consisting of 
the 16 attributes. The results should indicate the character classification, and the 26 actual 
numeric outputs of the network. (the start-up codes partly include this functionality already, for 
a simple 3-layer network (1 hidden layer), but you need to modify it to make it work for the 
multiple hidden layer architecture that you have designed). 
5. Provide an interface in your program for: 
A. Reading the entire data set 
B. Initialising the network 
C. Loading trained weights 
D. Saving trained weights 
E. Training the network up to a maximum number of epochs 
159.740 Intelligent Systems
Assignment #2 
F. Testing the network on a specified test set (from a file) 
G. Shuffling the training set. 
6. Set the default settings of the user interface (e.g. learning rate, weights, etc.) to the best 
configuration that delivered the best experiment results. 
7. Use a fixed random seed number (123) so that any randomisation can be replicated empirically. 
8. It is up to you to write the main program, and any classes or data structures that you may 
require. 
9. You may choose to use a momentum term or regularization term, as part of backpropagation 
learning. Indicate in your documentation, if you are using this technique. 
10. You need to modify the weight-update rules to reflect the correct derivatives of the activation 
function used in your network architecture. 
11. Provide graphs in Excel showing the network performance on training data and test data 
(similar to the graphs discussed in the lecture). 
12. Provide the specifications of your best trained network. Fill-up Excel workbook 
(best_network_configuration.xlsx). 
13. Provide a confusion matrix for the best NN classifier system found in your experiments. 
14. Provide a short user guide for your program. 
15. Fill-up the Excel file, named checklist.xlsx, to allow for accurate marking of your assignment. 
Criteria for marking 
 Documentation – 30% 
o Submit the trained weights of your best network (name it as best_weights.txt) 
o Generate a graph of the performance of your best performing network (MSE vs. 
Epochs) on the training set and test set. 
o Generate a confusion matrix of your best network 
o fill-up the Excel file, named checklist.xlsx
o fill-up the Excel file, named best_network_configuration.xlsx
o provide a short user guide for your program 
 System implementation – 70% 
Nothing follows. 
N.H.Reyes 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當前頁
  • 上一篇:DATA 2100代寫、代做Python語言編程
  • 下一篇:ME5701程序代寫、代做Matlab設計編程
  • ·代寫2530FNW、代做Python程序語言
  • ·代寫CIS5200、代做Java/Python程序語言
  • ·LCSCI4207代做、Java/Python程序代寫
  • ·代寫COP3502、Python程序設計代做
  • ·代做MLE 5217、代寫Python程序設計
  • ·代寫ISAD1000、代做Java/Python程序設計
  • ·代做COMP3811、C++/Python程序設計代寫
  • ·代寫SCIE1000、代做Python程序設計
  • ·代寫comp2022、代做c/c++,Python程序設計
  • ·CVEN9612代寫、代做Java/Python程序設計
  • 合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網(wǎng)

    關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                亚洲嫩草精品久久| 在线看国产一区二区| 亚洲欧美国产高清| 美日韩黄色大片| 国产一区福利在线| 制服丝袜亚洲网站| 亚洲综合偷拍欧美一区色| 99久久免费视频.com| 久久精品国产99久久6| 激情文学综合网| 这里是久久伊人| 精品一区二区久久| 中文字幕第一区二区| 中文字幕一区二区三区乱码在线| 欧美精品久久99久久在免费线| 天天综合色天天综合| 日韩精品一区二区三区四区| 国产91丝袜在线18| 一区二区欧美视频| 久久久高清一区二区三区| 91在线观看污| 黑人巨大精品欧美黑白配亚洲| 国产欧美精品一区aⅴ影院| 色婷婷久久久亚洲一区二区三区 | 欧美一区二区三区四区五区| 国产福利一区二区三区视频在线 | 成人欧美一区二区三区白人 | 色偷偷成人一区二区三区91| 蜜桃av噜噜一区二区三区小说| 国产精品成人午夜| 日韩午夜激情av| 91啦中文在线观看| 国产一区二区三区精品视频| 亚洲国产毛片aaaaa无费看 | 国产精品一区久久久久| 亚洲自拍欧美精品| 国产精品欧美久久久久一区二区| 欧美男生操女生| 色婷婷综合视频在线观看| 欧美精品一区二区三区在线 | av午夜精品一区二区三区| 亚洲在线视频免费观看| 99久久综合国产精品| 国产精品女主播在线观看| 91一区二区三区在线观看| 亚洲综合丁香婷婷六月香| 欧美午夜一区二区| 99国产精品99久久久久久| 99精品视频在线观看免费| 日韩欧美成人激情| 色婷婷综合久色| 成人精品视频一区二区三区| 国产一区二区在线视频| 久久成人18免费观看| 午夜精品久久久久久不卡8050| 亚洲免费av观看| 亚洲欧洲在线观看av| 中文字幕一区在线观看| 国产精品欧美综合在线| 国产精品免费久久| 亚洲色图自拍偷拍美腿丝袜制服诱惑麻豆 | 成人激情综合网站| 韩国av一区二区| 国产一区二区伦理片| 国产91精品精华液一区二区三区 | 国产一区二区按摩在线观看| 国产一区91精品张津瑜| 成人精品视频一区二区三区尤物| 97精品视频在线观看自产线路二| 色综合天天在线| 69精品人人人人| 久久久精品黄色| 夜夜嗨av一区二区三区网页| 日韩国产精品91| 国产69精品久久777的优势| av电影天堂一区二区在线| 国产成人精品影视| 91尤物视频在线观看| 91精品国产一区二区三区| 久久久久久久久99精品| 一区二区三区久久| 热久久一区二区| 91免费看视频| 欧美成人vps| 亚洲色大成网站www久久九九| 亚洲成人在线网站| 国内精品国产三级国产a久久 | 日韩一区二区三区四区五区六区 | 555夜色666亚洲国产免| 欧美日韩www| 欧美日韩一区久久| 欧美日韩高清一区二区不卡| 欧美日韩一区在线| 欧美日本在线一区| 国产精品家庭影院| 色综合视频一区二区三区高清| 国产乱码精品1区2区3区| 国产成人精品免费视频网站| 不卡的av在线| 毛片一区二区三区| 国产乱码精品一区二区三区av| www.日韩在线| 日本韩国一区二区| 欧美一级淫片007| 久久综合色鬼综合色| 中文字幕视频一区| 91麻豆精品国产无毒不卡在线观看| 欧美日韩亚洲另类| 国产三级欧美三级| 一区二区三区中文免费| 男女激情视频一区| 99久久精品情趣| 欧美一区二区三区系列电影| 欧美国产精品一区二区三区| 亚洲激情欧美激情| 激情文学综合网| 欧美视频一区二区三区四区| 久久综合九色综合97_久久久| 国产精品久久久久久久久果冻传媒| 337p粉嫩大胆色噜噜噜噜亚洲 | 在线视频一区二区三| 日韩精品一区二区在线观看| 国产精品无遮挡| 日本成人在线视频网站| 91精品国产综合久久香蕉麻豆| 国产精品久久三| 日韩中文字幕1| 91麻豆国产香蕉久久精品| 精品少妇一区二区三区视频免付费| 国产精品成人一区二区艾草 | 亚洲资源中文字幕| 黄色资源网久久资源365| 在线观看亚洲a| 久久久不卡网国产精品一区| 国产一区二区三区在线观看免费| 亚洲一区二区三区中文字幕 | 久久美女高清视频| 精品一区二区三区久久| 欧美xxxxx裸体时装秀| 丁香六月久久综合狠狠色| 中文字幕视频一区| 久久se这里有精品| 欧美日韩亚洲综合在线 欧美亚洲特黄一级 | 欧美一区二区成人| 欧美成人r级一区二区三区| 国产乱码精品1区2区3区| 日韩视频中午一区| 婷婷综合在线观看| 欧美日韩另类一区| 亚洲一二三四久久| 91免费观看国产| 亚洲啪啪综合av一区二区三区| 日韩精品三区四区| 欧美国产综合一区二区| 岛国av在线一区| 国产精品久久久久国产精品日日| 国产乱子伦视频一区二区三区 | 欧美国产激情二区三区| 国产精品自在欧美一区| 久久久91精品国产一区二区精品| 国产成人在线观看免费网站| 久久久国产精品午夜一区ai换脸| 国产综合色在线视频区| 欧美性欧美巨大黑白大战| 蜜臀av一区二区| 亚洲精品一区二区三区99| 国产夫妻精品视频| 亚洲日韩欧美一区二区在线| 欧美图片一区二区三区| 日韩1区2区3区| 56国语精品自产拍在线观看| 日本vs亚洲vs韩国一区三区二区| 精品成人在线观看| 91在线国产福利| 三级在线观看一区二区| 91久久久免费一区二区| 日日噜噜夜夜狠狠视频欧美人| 日韩欧美www| 美国精品在线观看| 成人白浆超碰人人人人| 一本色道久久加勒比精品| 成人丝袜视频网| 91视频观看视频| 欧美精品精品一区| 国产精品国产三级国产aⅴ中文| 日韩一区在线播放| 午夜伊人狠狠久久| 激情综合亚洲精品| 欧美日韩不卡一区二区| 欧美经典一区二区三区| 久久激情综合网| 一区二区三区精密机械公司| 91.成人天堂一区| 国产剧情一区在线| 极品少妇一区二区| 亚洲另类在线视频| 日韩精品一区二区三区中文不卡| 国产成人8x视频一区二区| 亚洲va欧美va人人爽午夜| 国产精品国产三级国产aⅴ无密码 国产精品国产三级国产aⅴ原创 |