99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫EE5434、代做c/c++,Java程序
代寫EE5434、代做c/c++,Java程序

時間:2024-12-06  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



EE5434 final project 
 
Data were available on Nov. 5 (see the Kaggle website) 
Report and source codes due: 11:59PM, Dec. 6th 
Full mark: 100 pts. 
 
During the process, you can keep trying new machine learning models and boost the learning 
accuracy. 
 
You are encouraged to form groups of size 2 with your classmates so that the team can 
implement multiple learning models and compare their performance. If you cannot find any 
partners, please send a message on the group discussion board and briefly introduce your 
expertise. If you prefer to do this project yourself, you can get 5 bonus points. 
 
Submission format: Report should be in PDF format. Source code should be in a notebook file 
(.ipynb) and also save your source code as a HTML file (.html). Thus, there are three files you 
need to upload to Canvas. Remember that you should not copy anyone’s codes, which can lead 
to faisure of this course. 
 
Files and naming rules: If you have two members in the team, start the file name with G2, 
otherwise, G1. For example, you have a teammate and the team members are: Jackie Lee and 
Xuantian Chan, name it as G2-Lee-Chan.xxx. 5 pts will be deducted if the naming rule is not 
followed. In your report, please clearly show the group members. 
 
How do we grade your report? We will consider the following factors. 
 
 1. You would get 30% (basic grade) if you correctly applied two learning models to our 
classification problem. The accuracy should be much better than random guess. Your 
report is written in generally correct English and is easy to follow. Your report should 
include clear explanation of your implementation details and basic analysis of the 
results. 
2. Factors in grading: 
a. Applied/implemented and compared at least 2 different models. You show good 
sense in choosing appropriate models (such as some NLP related models). 
b. For each model, clear explanation of the feature encoding methods, model 
structure, etc. Carefully tuned multiple sets of parameters or feature engineering 
methods. Provided evidence of multiple methods to boost the performance. 
c. Consider performance metrics beyond accuracy (such as confusion matrix, recall, 
ROC, etc.). Carefully compare the performance of different 
methods/models/parameter sets. Being able to present your results using the most 
insightful means such as tables/figures etc. 
d. Well-written reports that are easy to follow/read. 
e. Final ranking on Kaggle.  For each of the factor, we have unsatisfactory (1), acceptable (2), satisfactory (3), good (4), 
excellent (5). The sum of each factor will determine the grade. For example, student A got 4 
good and 1 acceptable for a to e. Then, A’s total score is 4*4+2=16. The full mark for a to e is 
25. So, A’s percentage is 64%. 
 
 
Note that if the final performance is very close (e.g. 0.65 vs 0.66), the corresponding 
submissions belong to the same group in the ranking. 
 
Factors that can increase your grade: 
1. You used a new learning model/feature engineering method that was not taught in 
class. This requires some reading and clear explanation why you think this model fits this 
problem. 
2. Your model’s performance is much better than others because of a new or optimized 
method. 
 
The format of the report 
1. There is no page limit for the report. If you don’t have much to report, keep it simple. 
Also, miminize the language issues by proofreading. 
2. To make our grading more standard, please use the following sections: 
a. Abstract. Summarize the report (what you done, what methods you use and the 
conclusions). (less than 300 words) 
b. Data properties (data explortary analysis). You should describe your 
understanding/analysis of the data properties. 
c. Methods/models. In this section, you should describe your implemented models. 
Provide key parameters. For example, what are the features? If you use kNN, 
what is k and how you computed the distance? If you use ANN, what is the 
architecture, etc. You should separate the high-level description of the models 
and the tuning of hyper-parameters. 
d. Experimental results. In this section, compare and summarize the results using 
appropriate tables/figures. Simplying copying screening is acceptable but will 
lead to low mark for sure. Instead, you should *summarize* your results. You 
can also compare the performance of your model under different 
hyperparameters. 
e. Conclusion and discussion. Discussion why your models perform well or poorly. 
f. Future work. Discuss what you could do if more time is given. 
3. For each model you tried, provide the codes of the model with the best performance. In 
your report, you can detail the performance of this model with different parameters. 
 
The code 
The code should include: 
1. Preprocessing of the data 2. Construction of the model 
3. Training 
4. Validation 
5. Testing 
6. And other code that is necessary 
 
This is the link that you need to use to join the competition. 
https://www.kaggle.com/t/7917***6956041b8acb64b6268afb4de 
 
 
 
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



 

掃一掃在手機打開當前頁
  • 上一篇:代寫ENGG1110、代做C++語言編程
  • 下一篇:COMP2010J代做、代寫c/c++,Python程序
  • ·MS3251代寫、代做Python/Java程序
  • ·COMP4134代做、Java程序語言代寫
  • ·代寫ENG4200、Python/Java程序設計代做
  • ·代寫I&C SCI 46 、c/c++,Java程序語言代做
  • ·CCIT4020代做、代寫c/c++,Java程序設計
  • ·代寫COMP2011J、Java程序設計代做
  • ·IS3240代做、代寫c/c++,Java程序語言
  • ·代寫CSE x25、C++/Java程序設計代做
  • ·代寫program、代做c++,Java程序語言
  • · 代寫MCEN30017、代做C++,Java程序
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                av在线不卡免费看| 久久激情综合网| 日韩一区二区三区三四区视频在线观看 | 日韩精品久久理论片| 国产精品久久久久久久久免费相片| ww亚洲ww在线观看国产| 日韩无一区二区| 日韩免费高清视频| 日韩欧美一区二区三区在线| 91精品国模一区二区三区| 欧美精选在线播放| 日韩一区二区三区免费看 | 99视频在线观看一区三区| 国产精品一二三区在线| 国产精品综合二区| 懂色一区二区三区免费观看| 国产99精品国产| 91原创在线视频| 91精品福利在线| 在线播放视频一区| 久久综合久久综合亚洲| 中文一区二区在线观看| 亚洲免费观看高清完整版在线观看熊| 亚洲日本欧美天堂| 亚洲一区在线视频观看| 美女免费视频一区二区| 国产一区二区三区综合| 成人妖精视频yjsp地址| 欧洲一区二区av| 日韩一级二级三级| 国产精品天美传媒沈樵| 亚洲国产成人tv| 国产精品资源在线| 99久久久久久| 日韩精品一区国产麻豆| 国产精品久久久久婷婷二区次 | 国产一区二区在线看| 97se亚洲国产综合自在线观| 欧美丰满少妇xxxxx高潮对白| 欧美成人乱码一区二区三区| 国产精品拍天天在线| 亚洲高清中文字幕| 国产一区二区三区国产| 欧美在线综合视频| 精品欧美黑人一区二区三区| 中文字幕一区免费在线观看| 三级久久三级久久| 99久久久久免费精品国产| 日韩一级片网址| 亚洲婷婷在线视频| 精品一二线国产| 在线这里只有精品| 亚洲精品一区二区三区影院| 亚洲欧美激情一区二区| 精一区二区三区| 欧美怡红院视频| 国产欧美中文在线| 秋霞电影网一区二区| 91在线播放网址| 国产喂奶挤奶一区二区三区| 午夜欧美2019年伦理| av在线这里只有精品| 日韩欧美不卡在线观看视频| 一区二区高清视频在线观看| 国产suv精品一区二区6| 精品久久国产字幕高潮| 亚洲成av人综合在线观看| 国产91精品在线观看| 欧美一级理论片| 亚洲一区视频在线| av在线不卡电影| 欧美国产1区2区| 国产精品影音先锋| 日韩一级大片在线观看| 日韩精品一二三四| 777午夜精品视频在线播放| 亚洲一区二区在线视频| 色偷偷88欧美精品久久久| 久久久久久久综合色一本| 日本中文在线一区| 欧美人狂配大交3d怪物一区| 亚洲va欧美va人人爽| 欧美日韩专区在线| 午夜成人免费视频| 欧美在线观看18| 亚洲一区二区av在线| 欧美性色综合网| 天天综合天天做天天综合| 欧美男女性生活在线直播观看| 亚洲激情图片一区| 欧美日韩精品一区二区三区蜜桃| 亚洲图片一区二区| 欧美喷潮久久久xxxxx| 午夜精品久久久久久不卡8050| 欧美区一区二区三区| 久久99国内精品| 国产欧美视频一区二区| 成人黄色片在线观看| 亚洲人成7777| 欧美日韩国产高清一区二区| 青娱乐精品在线视频| 久久先锋资源网| 99视频精品在线| 亚洲一区二区三区四区中文字幕| 欧美日韩视频在线一区二区| 天天操天天干天天综合网| 欧美电影免费观看高清完整版在线观看| 国产精品影视天天线| 亚洲天堂中文字幕| 欧美三级日韩在线| 久久99精品久久久久久国产越南| 欧美国产一区在线| 欧美欧美午夜aⅴ在线观看| 国产一区二区视频在线| 亚洲日本韩国一区| 日韩欧美一级特黄在线播放| 不卡一区二区在线| 日韩精品一区第一页| 国产精品色在线| 51精品秘密在线观看| 国产一区二区三区综合| 一区二区三区四区不卡视频| 日韩免费性生活视频播放| 成人av网站免费观看| 日韩在线卡一卡二| 中文字幕在线播放不卡一区| 欧美一级夜夜爽| 99r国产精品| 国产精品自拍毛片| 午夜欧美2019年伦理| 国产精品系列在线| 欧美一区二区国产| 99久久精品免费看国产| 欧美日韩1区2区| 国产精品国产三级国产aⅴ入口| 亚洲精品中文在线| 国产在线精品一区在线观看麻豆| 丝瓜av网站精品一区二区| 日韩国产欧美在线播放| 一本色道久久综合狠狠躁的推荐 | 首页国产欧美久久| 亚洲欧美激情一区二区| 日韩一区二区三区四区五区六区 | 国产专区欧美精品| 亚洲精品五月天| 国产日韩精品一区| 日韩情涩欧美日韩视频| 欧美日韩三级一区| 93久久精品日日躁夜夜躁欧美| 国产激情一区二区三区| 亚洲成人动漫精品| 自拍偷拍亚洲综合| 中文av一区特黄| 欧美电影免费提供在线观看| 欧美日韩视频专区在线播放| 色婷婷精品久久二区二区蜜臀av| 丁香六月综合激情| 成人一级黄色片| 成人av手机在线观看| 国产成人在线免费| 国产一区二区三区黄视频 | 在线观看91av| 欧美高清hd18日本| 51精品秘密在线观看| 欧美一区二区三区四区久久| 在线电影欧美成精品| 欧美主播一区二区三区| 欧美日韩久久一区二区| 欧美视频在线播放| 欧美二区乱c少妇| 日韩欧美国产成人一区二区| 91精品国产麻豆国产自产在线| 678五月天丁香亚洲综合网| 在线播放视频一区| 日韩精品一区二区三区视频| www久久精品| 国产日韩影视精品| 中文字幕欧美日韩一区| 亚洲另类中文字| 午夜精品福利一区二区蜜股av| 蜜桃一区二区三区在线观看| 免费成人av在线| 国产精品一区一区三区| 成人国产精品视频| 日本精品视频一区二区三区| 在线观看视频一区二区欧美日韩| 欧美一区二区性放荡片| 2019国产精品| 国产精品亲子伦对白| 亚洲成人免费视| 狠狠色综合日日| a级高清视频欧美日韩| 日本乱码高清不卡字幕| 日韩欧美一卡二卡| 国产清纯美女被跳蛋高潮一区二区久久w| 国产视频911| 亚洲成av人**亚洲成av**| 久久99久久久久| 国产高清不卡二三区| 日韩一区二区三区视频|