99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做MATH2110、代寫c/c++,Python程序
代做MATH2110、代寫c/c++,Python程序

時間:2025-03-16  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



The University of Nottingham
SCHOOL OF MATHEMATICAL SCIENCES
SPRING SEMESTER SEMESTER 2025
MATH2110 - STATISTICS 3
Coursework 1
Deadline: 3pm, Friday 14/3/2025
Your neat, clearly-legible solutions should be submitted electronically as a Jupyter or PDF file via the MATH2110
Moodle page by the deadline indicated there. As this work is assessed, your submission must be entirely your
own work (see the University’s policy on Academic Misconduct).
Submissions up to five working days late will be subject to a penalty of 5% of the maximum mark per working
day.
Deadline extensions due to Support Plans and Extenuating Circumstances can be requested according to
School and University policies, as applicable to this module. Because of these policies, solutions (where
appropriate) and feedback cannot normally be released earlier than 10 working days after the main cohort
submission deadline.
Please post any academic queries in the corresponding Moodle forum, so that everyone receives the same
assistance. As it’s assessed work, I will only be able to answer points of clarification.
The work is intended to be approximately equal to a week’s worth of study time on the module for a student
who has worked through the module content as intended - including the R aspects. If you have any issues
relating to your own personal circumstances, then please email me.
THE DATA
The objective is to build a predictive model for the median house price in Boston neighbourhoods using various
neighbourhood characteristics. Median house price is a crucial indicator for urban planning and economic
studies. It is important to understand how different social indicators affect it. To this end, the dataset we will
analyse here contains detailed records of 506 neighbourhoods, capturing factors such as crime rates, age of
the properties, etc.
The training and test data are provided in the files BostonTrain.csv and BostonTest.csv available at the Moodle
page. The train file contains observations for 404 neighbourhoods. The target variable is medv, median value
of houses in thousands of dollars. The predictors include:
• crim, which contains the per capita crime rate by town.
• zn, which contains the proportion of residential land.
• rm, which contains the average number of rooms per house.
• age, which contains the proportion of houses built before 1940.
• dis, which contains distances to large employment centres.
MATH2110 Turn Over
2 MATH2110
• ptratio, which contains the student-teacher ratio by town.
• lstat, which contains the percentage of lower-status population.
The test data is provided in the file BostonTest.csv, containing observations for 102 neighbourhoods. The
test data should only be used to evaluate the predictive performance of your models.
THE TASKS
(a) (80 marks) Using only the training data (BostonTrain.csv), develop one or more models to predict the
median house price (medv) based on the predictor variables. You may use any methods covered in this
module. For this part, the test data must not be used. Your analysis should include:
– Model selection and justification.
– Diagnostics to assess the quality of your model(s).
– Interpretation of the model parameters. Which parameters seem to have a greater importance for
prediction?
(b) (20 marks) Use your “best” model(s) from (a) to predict the median house price (medv) for the neighbourhoods
in the test dataset (BostonTest.csv). Provide appropriate numerical summaries and plots to evaluate the
quality of your predictions. Compare your predictions to those of a simple linear model of the form:
medv ∼ crim.
NOTES
• An approximate breakdown of marks for part (a) is: exploratory analysis (20 marks), model selection
(40 marks), model checking and discussion (20 marks). About half the marks for each are for doing
technically correct and relevant things, and half for discussion and interpretation of the output. However,
this is only a guide, and the work does not have to be rigidly set out in this manner. There is some natural
overlap between these parts, and overall level of presentation and focus of the analysis are also important
in the assessment. The above marks are also not indicative of the relative amount of output/discussion
needed for each part, it is the quality of what is produced/discussed which matters.
• As always, the first step should be to do some exploratory analysis. However, you do not need to go
overboard on this. Explore the data yourself, but you only need to report the general picture, plus any
findings you think are particularly important.
• For the model fitting/selection, you can use any of the frequentist techniques we have covered to investigate
potential models - automated methods can be used to narrow down the search, but you can still use
hypothesis tests, e.g. if two different automated methods/criteria suggest slightly different models.
• Please make use of the help files for 𝑅 commands. Some functions may require you to change their
arguments a little from examples in the notes, or behaviour/output can be controlled by setting optional
arguments.
• You should check the model assumptions and whether conclusions are materially affected by any influential
data points.
• The task is deliberately open-ended: as this is a realistic situation with real data, there is not one single
correct answer, and different selection methods may suggest different “best” models - this is normal.
Your job is to investigate potential models using the information and techniques we have covered. The
important point is that you correctly use some of the relevant techniques in a logical and principled
manner, and provide a concise but insightful summary of your findings and reasoning. Note however
that you do not have to produce a report in a formal “report” format.
MATH2110
3 MATH2110
• You do not need to include all your 𝑅 output, as you will likely generate lots of output when experimenting.
For example, you may look at quite a large number of different plots and you might do lots of experimentation
in the model development stage. You only need to report the important plots/output which justify your
decisions and conclusions, and whilst there is no word or page limit, an overly-verbose analysis with
unnecessary output will detract from the impact.
MATH2110 End

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:推動電機行業創新升級,開創智能驅動未來新篇章
  • 下一篇:代寫 MATH5905、代做 Python/java 程序
  • ·代寫SE360、Java/Python程序代做
  • ·MISCADA代做、代寫Python程序語言
  • ·代寫CSE 231、代做Python程序語言
  • ·CP414編程代寫、代做Java/Python程序
  • ·CIV6782代做、代寫Python程序語言
  • ·CS305程序代做、代寫Python程序語言
  • ·代寫FN6806、代做c/c++,Python程序語言
  • ·代寫CS-UY 4563、Python程序語言代做
  • ·CE235編程代寫、代做python程序設計
  • ·COMP2010J代做、代寫c/c++,Python程序
  • 合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 豆包 幣安下載 AI生圖 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    99爱在线视频这里只有精品_窝窝午夜看片成人精品_日韩精品久久久毛片一区二区_亚洲一区二区久久

          9000px;">

                欧美一区二区福利在线| 一区二区三区在线视频免费观看| 97aⅴ精品视频一二三区| 欧洲av一区二区嗯嗯嗯啊| 精品国产乱码久久| 国产精品不卡一区| 国产精品久久久久久久久晋中| 欧美日韩国产乱码电影| 欧美日韩卡一卡二| 欧美性猛交xxxx乱大交退制版| www.欧美色图| eeuss鲁片一区二区三区在线看| av不卡在线观看| 91亚洲精品久久久蜜桃网站 | 国产美女久久久久| 国产欧美一区二区精品仙草咪| 欧美激情一区在线观看| 欧美成人精精品一区二区频| 日韩av中文在线观看| 久久久亚洲国产美女国产盗摄| 成人性视频网站| 欧美高清一级片在线| 亚洲电影第三页| 欧美日韩一区二区在线观看视频| 亚洲综合图片区| 理论电影国产精品| 欧美性xxxxx极品少妇| 亚洲国产精品99久久久久久久久| 男女性色大片免费观看一区二区 | 成人欧美一区二区三区1314| 日韩精品欧美精品| 欧美日韩精品欧美日韩精品一| 日韩欧美国产三级| 久久97超碰色| 久久久美女艺术照精彩视频福利播放| 日本女优在线视频一区二区| 欧美精品在线视频| 精品一区二区三区久久| 国产欧美日韩亚州综合| 国产精品一区久久久久| 日韩理论片一区二区| 欧美午夜免费电影| 精品一区二区三区免费播放| 欧美成人免费网站| 亚洲自拍另类综合| 国产欧美日韩在线视频| 91精品综合久久久久久| 在线精品国精品国产尤物884a| 国产制服丝袜一区| 国产精品亚洲人在线观看| 国产原创一区二区三区| 国产精品18久久久久久久网站| 亚洲最新在线观看| 亚洲不卡av一区二区三区| 日韩电影免费在线看| 蜜臀va亚洲va欧美va天堂| 成人欧美一区二区三区| 91麻豆视频网站| 国产另类ts人妖一区二区| 久久久综合九色合综国产精品| 国产成人综合精品三级| 亚洲日本免费电影| 国产亚洲精品中文字幕| 91国偷自产一区二区使用方法| 五月婷婷激情综合| 亚洲人成小说网站色在线| 精品国产91九色蝌蚪| 91黄色免费看| 国产成人夜色高潮福利影视| 国产精品萝li| 99国产精品一区| 亚洲综合成人网| 成人午夜在线视频| 国产真实精品久久二三区| 色呦呦一区二区三区| 亚洲乱码国产乱码精品精可以看| 成人免费视频网站在线观看| 欧美巨大另类极品videosbest| 欧美一区二区三区啪啪| 亚洲精品一二三| 成人午夜免费电影| 丁香啪啪综合成人亚洲小说 | 国产91丝袜在线播放0| 日韩av一级片| 国产一区视频导航| 风流少妇一区二区| 99精品视频在线免费观看| 色先锋久久av资源部| 9191成人精品久久| 久久亚洲精品国产精品紫薇| 国产精品五月天| 一区二区三区在线视频免费 | **欧美大码日韩| 日韩在线一二三区| 91首页免费视频| 亚洲精品一区在线观看| 亚洲午夜免费电影| 国产乱子伦一区二区三区国色天香| www.欧美.com| 久久久高清一区二区三区| 亚洲综合丝袜美腿| 国产盗摄一区二区三区| 不卡av免费在线观看| 水蜜桃久久夜色精品一区的特点| 色综合天天视频在线观看| 亚洲美女屁股眼交3| 欧美日韩一级二级| 日本sm残虐另类| 精品久久人人做人人爽| 国产在线不卡视频| 伊人性伊人情综合网| 2023国产一二三区日本精品2022| 福利电影一区二区三区| 图片区小说区区亚洲影院| 久久蜜臀精品av| 91视频在线观看| 免费看日韩精品| 色综合久久久久综合体桃花网| 欧美大胆人体bbbb| 亚洲精品一二三| 91国产丝袜在线播放| 久久久久99精品一区| 国产成人综合视频| 国产欧美日韩在线看| 成人午夜精品一区二区三区| 国产欧美日韩在线观看| 福利电影一区二区| 中文字幕第一区综合| 在线不卡免费欧美| 麻豆91精品91久久久的内涵| 日韩午夜在线影院| 石原莉奈一区二区三区在线观看 | 欧美大片在线观看| 91超碰这里只有精品国产| 激情六月婷婷久久| 日韩av中文字幕一区二区三区| 白白色亚洲国产精品| 色狠狠综合天天综合综合| 91精品国产乱码久久蜜臀| 日韩精品一级二级 | 中文字幕成人av| 欧美日本国产视频| 99视频精品全部免费在线| 日韩1区2区日韩1区2区| 亚洲午夜私人影院| 中文字幕第一页久久| 国产无一区二区| 国产日韩欧美一区二区三区乱码| 欧美日韩和欧美的一区二区| 色综合 综合色| 91丝袜美腿高跟国产极品老师| 国产精品正在播放| 国产宾馆实践打屁股91| 黄色小说综合网站| 国产成人精品www牛牛影视| 国产呦精品一区二区三区网站| 美女网站色91| 成人在线视频一区| 91久久免费观看| 欧美日韩精品一区视频| 欧美日韩中文国产| 欧美日韩中文精品| 亚洲aaa精品| 美腿丝袜亚洲一区| 91福利视频在线| 亚洲免费观看视频| 国产成人精品午夜视频免费| 欧美日韩精品一区视频| 亚洲一区二区三区四区五区黄| 久草精品在线观看| 在线亚洲高清视频| 中文字幕一区二区三区视频| 成人久久视频在线观看| 日韩欧美一二三区| 国产九色精品成人porny| 欧美一卡在线观看| 日韩成人av影视| 日本韩国欧美一区| 91久久精品一区二区二区| 欧美精品一级二级| 欧美视频完全免费看| 欧美精品日韩一本| 精品欧美一区二区久久| 亚洲欧美日韩小说| 亚洲国产成人91porn| 裸体歌舞表演一区二区| 国产在线一区观看| 欧洲日韩一区二区三区| 精品国产sm最大网站免费看| 蜜臀av在线播放一区二区三区| 成人av电影在线观看| 久久久久久久久久看片| 日韩黄色免费电影| 国产99久久久精品| 欧美大片在线观看| 久久久久99精品国产片| 成人免费在线视频| 亚洲成a人v欧美综合天堂| 精品一区二区免费在线观看| 亚洲一区二区av电影|